BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10605119)

  • 1. Patterns of temperature adaptation in proteins from Methanococcus and Bacillus.
    McDonald JH; Grasso AM; Rejto LK
    Mol Biol Evol; 1999 Dec; 16(12):1785-90. PubMed ID: 10605119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus.
    McDonald JH
    Mol Biol Evol; 2001 May; 18(5):741-9. PubMed ID: 11319258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species.
    Haney PJ; Badger JH; Buldak GL; Reich CI; Woese CR; Olsen GJ
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3578-83. PubMed ID: 10097079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid coupling patterns in thermophilic proteins.
    Liang HK; Huang CM; Ko MT; Hwang JK
    Proteins; 2005 Apr; 59(1):58-63. PubMed ID: 15688447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A comparison of amino acid composition of proteins from thermophiles and mesophiles].
    Lu B; Wang G; Huang P
    Wei Sheng Wu Xue Bao; 1998 Feb; 38(1):20-5. PubMed ID: 12549384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genes and derived amino acid sequences of S-layer proteins from mesophilic, thermophilic, and extremely thermophilic methanococci.
    Akca E; Claus H; Schultz N; Karbach G; Schlott B; Debaerdemaeker T; Declercq JP; König H
    Extremophiles; 2002 Oct; 6(5):351-8. PubMed ID: 12382110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature adaptation at homologous sites in proteins from nine thermophile-mesophile species pairs.
    McDonald JH
    Genome Biol Evol; 2010 Jul; 2():267-76. PubMed ID: 20624731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for thermostability and identification of potential active site residues for adenylate kinases from the archaeal genus Methanococcus.
    Haney P; Konisky J; Koretke KK; Luthey-Schulten Z; Wolynes PG
    Proteins; 1997 May; 28(1):117-30. PubMed ID: 9144797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stability of thermophilic proteins: a study based on comprehensive genome comparison.
    Das R; Gerstein M
    Funct Integr Genomics; 2000 May; 1(1):76-88. PubMed ID: 11793224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environment specific substitution tables for thermophilic proteins.
    Mizuguchi K; Sele M; Cubellis MV
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S15. PubMed ID: 17430559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using a strategy based on the concept of convergent evolution to identify residue substitutions responsible for thermal adaptation.
    Lin YS
    Proteins; 2008 Oct; 73(1):53-62. PubMed ID: 18384082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study.
    Chakravarty S; Varadarajan R
    Biochemistry; 2002 Jun; 41(25):8152-61. PubMed ID: 12069608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-dependent relationships between growth temperature of prokaryotes and the amino acid frequency in their proteins.
    Saelensminde G; Halskau Ø; Helland R; Willassen NP; Jonassen I
    Extremophiles; 2007 Jul; 11(4):585-96. PubMed ID: 17429573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterisation of the selenocysteine-specific translation factor SelB from the archaeon Methanococcus jannaschii.
    Rother M; Wilting R; Commans S; Böck A
    J Mol Biol; 2000 Jun; 299(2):351-8. PubMed ID: 10860743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid distribution in mesophilic and thermophilic strains of the genus Bacillus.
    Shen PY; Coles E; Foote JL; Stenesh J
    J Bacteriol; 1970 Aug; 103(2):479-81. PubMed ID: 5432012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide patterns of nucleotide substitution reveal stringent functional constraints on the protein sequences of thermophiles.
    Friedman R; Drake JW; Hughes AL
    Genetics; 2004 Jul; 167(3):1507-12. PubMed ID: 15280258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures.
    Nakashima H; Fukuchi S; Nishikawa K
    J Biochem; 2003 Apr; 133(4):507-13. PubMed ID: 12761299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae.
    Pollo SM; Zhaxybayeva O; Nesbø CL
    Can J Microbiol; 2015 Sep; 61(9):655-70. PubMed ID: 26211682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics of Methanococcus: possibilities for functional genomics in Archaea.
    Tumbula DL; Whitman WB
    Mol Microbiol; 1999 Jul; 33(1):1-7. PubMed ID: 10411718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide sequence of a gene encoding a histone-like protein in the archaeon Methanococcus voltae.
    Agha-Amiri K; Klein A
    Nucleic Acids Res; 1993 Mar; 21(6):1491. PubMed ID: 8464744
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.