BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 10605732)

  • 1. Cyclic nucleotides and phosphodiesterases in platelets.
    Haslam RJ; Dickinson NT; Jang EK
    Thromb Haemost; 1999 Aug; 82(2):412-23. PubMed ID: 10605732
    [No Abstract]   [Full Text] [Related]  

  • 2. Cyclic nucleotide phosphodiesterases and human arterial smooth muscle cell proliferation.
    Rybalkin SD; Bornfeldt KE
    Thromb Haemost; 1999 Aug; 82(2):424-34. PubMed ID: 10605733
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of Sildenafil on human platelet secretory function is controlled by a complex interplay between phosphodiesterases 2, 3 and 5.
    Dunkern TR; Hatzelmann A
    Cell Signal; 2005 Mar; 17(3):331-9. PubMed ID: 15567064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in the study of Ca2+/CaM-activated phosphodiesterases: expression and physiological functions.
    Zhao AZ; Yan C; Sonnenburg WK; Beavo JA
    Adv Second Messenger Phosphoprotein Res; 1997; 31():237-51. PubMed ID: 9344255
    [No Abstract]   [Full Text] [Related]  

  • 5. Cyclic nucleotide phosphodiesterases: gene complexity, regulation by phosphorylation, and physiological implications.
    Burns F; Zhao AZ; Beavo JA
    Adv Pharmacol; 1996; 36():29-48. PubMed ID: 8783553
    [No Abstract]   [Full Text] [Related]  

  • 6. Type III cyclic nucleotide phosphodiesterases and insulin action.
    Manganiello VC; Degerman E; Taira M; Kono T; Belfrage P
    Curr Top Cell Regul; 1996; 34():63-100. PubMed ID: 8646851
    [No Abstract]   [Full Text] [Related]  

  • 7. Participation of peripheral and spinal phosphodiesterases 4 and 5 in inflammatory pain.
    Torres-López JE; Argüelles CF; Granados-Soto V
    Proc West Pharmacol Soc; 2002; 45():141-3. PubMed ID: 12434560
    [No Abstract]   [Full Text] [Related]  

  • 8. [Effect of theophylline on the electrical activity of the Helix pomatia neuron PPa2].
    Kononenko NI
    Neirofiziologiia; 1981; 13(6):655-7. PubMed ID: 6276798
    [No Abstract]   [Full Text] [Related]  

  • 9. Dynamic regulation of cAMP signaling by cGMP in the cardiovascular system: roles of phosphodiesterase 2 and phosphodiesterase 3 enzymes.
    Maurice DH
    Proc West Pharmacol Soc; 2003; 46():32-6. PubMed ID: 14699879
    [No Abstract]   [Full Text] [Related]  

  • 10. Differential regulation of human platelet responses by cGMP inhibited and stimulated cAMP phosphodiesterases.
    Manns JM; Brenna KJ; Colman RW; Sheth SB
    Thromb Haemost; 2002 May; 87(5):873-9. PubMed ID: 12038792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplicity within cyclic nucleotide phosphodiesterases.
    Rybalkin SD; Beavo JA
    Biochem Soc Trans; 1996 Nov; 24(4):1005-9. PubMed ID: 8968501
    [No Abstract]   [Full Text] [Related]  

  • 12. Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1).
    Kakkar R; Raju RV; Sharma RK
    Cell Mol Life Sci; 1999 Jul; 55(8-9):1164-86. PubMed ID: 10442095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors.
    Rutten K; Prickaerts J; Hendrix M; van der Staay FJ; Sik A; Blokland A
    Eur J Pharmacol; 2007 Mar; 558(1-3):107-12. PubMed ID: 17207788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective blockade of phosphodiesterase types 2, 5 and 9 results in cyclic 3'5' guanosine monophosphate accumulation in retinal pigment epithelium cells.
    Diederen RM; La Heij EC; Markerink-van Ittersum M; Kijlstra A; Hendrikse F; de Vente J
    Br J Ophthalmol; 2007 Mar; 91(3):379-84. PubMed ID: 16943225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cGMP signal termination.
    Pyne NJ; Arshavsky V; Lochhead A
    Biochem Soc Trans; 1996 Nov; 24(4):1019-22. PubMed ID: 8968504
    [No Abstract]   [Full Text] [Related]  

  • 16. Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis.
    Netherton SJ; Maurice DH
    Mol Pharmacol; 2005 Jan; 67(1):263-72. PubMed ID: 15475573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of platelet activation by cyclic AMP turnover and cyclic nucleotide phosphodiesterase type-3.
    Feijge MA; Ansink K; Vanschoonbeek K; Heemskerk JW
    Biochem Pharmacol; 2004 Apr; 67(8):1559-67. PubMed ID: 15041473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic nucleotide phosphodiesterase 5 and sildenafil: promises realized.
    Manganiello V
    Mol Pharmacol; 2003 Jun; 63(6):1209-11. PubMed ID: 12761329
    [No Abstract]   [Full Text] [Related]  

  • 19. Differential regulation of endothelial cell permeability by cGMP via phosphodiesterases 2 and 3.
    Surapisitchat J; Jeon KI; Yan C; Beavo JA
    Circ Res; 2007 Oct; 101(8):811-8. PubMed ID: 17704206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships.
    Ko WC; Shih CM; Lai YH; Chen JH; Huang HL
    Biochem Pharmacol; 2004 Nov; 68(10):2087-94. PubMed ID: 15476679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.