BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 10606029)

  • 1. Chondrocyte-biocompatibility of DegraPol-foam: in vitro evaluations.
    Saad B; Moro M; Tun-Kyi A; Welti M; Schmutz P; Uhlschmid GK; Neuenschwander P; Suter UW
    J Biomater Sci Polym Ed; 1999; 10(11):1107-19. PubMed ID: 10606029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro evaluation of the biofunctionality of osteoblasts cultured on DegraPol-foam.
    Saad B; Casotti M; Huber T; Schmutz P; Welti M; Uhlschmid GK; Neuenschwander P; Suter UW
    J Biomater Sci Polym Ed; 2000; 11(8):787-800. PubMed ID: 11211092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New versatile, elastomeric, degradable polymeric materials for medicine.
    Saad B; Neuenschwander P; Uhlschmid GK; Suter UW
    Int J Biol Macromol; 1999; 25(1-3):293-301. PubMed ID: 10416677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of osteoblasts and macrophages with biodegradable and highly porous polyesterurethane foam and its degradation products.
    Saad B; Matter S; Ciardelli G; Uhlschmid GK; Welti M; Neuenschwander P; Suter UW
    J Biomed Mater Res; 1996 Nov; 32(3):355-66. PubMed ID: 8897140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DegraPol-foam: a degradable and highly porous polyesterurethane foam as a new substrate for bone formation.
    Saad B; Kuboki Y; Welti M; Uhlschmid GK; Neuenschwander P; Suter UW
    Artif Organs; 2000 Dec; 24(12):939-45. PubMed ID: 11121973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyesterurethane foam scaffold for smooth muscle cell tissue engineering.
    Danielsson C; Ruault S; Simonet M; Neuenschwander P; Frey P
    Biomaterials; 2006 Mar; 27(8):1410-5. PubMed ID: 16157370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineered cartilage generated from human trachea using DegraPol scaffold.
    Yang L; Korom S; Welti M; Hoerstrup SP; Zünd G; Jung FJ; Neuenschwander P; Weder W
    Eur J Cardiothorac Surg; 2003 Aug; 24(2):201-7. PubMed ID: 12895608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradable and highly porous polyesterurethane foam as biomaterial: effects and phagocytosis of degradation products in osteoblasts.
    Saad B; Ciardelli G; Matter S; Welti M; Uhlschmid GK; Neuenschwander P; Suter UW
    J Biomed Mater Res; 1998 Mar; 39(4):594-602. PubMed ID: 9492221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vitro engineering of implantable human urinary tract tissue matrices.
    Danielsson C; Adelöw C; Hubschmid U; Neuenschwander P; Frey P
    Swiss Med Wkly; 2007 Mar; 137 Suppl 155():93S-98S. PubMed ID: 17874511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering.
    Chaim IA; Sabino MA; Mendt M; Müller AJ; Ajami D
    J Tissue Eng Regen Med; 2012 Apr; 6(4):272-9. PubMed ID: 21548137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of cellular affinity and compatibility to biodegradable polyesters and Type-II collagen-modified scaffolds using immortalized rat chondrocytes.
    Hsu SH; Tsai CL; Tang CM
    Artif Organs; 2002 Jul; 26(7):647-58. PubMed ID: 12081523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of degradable polyesterurethanes for medical applications: in vitro and in vivo evaluations.
    Saad B; Hirt TD; Welti M; Uhlschmid GK; Neuenschwander P; Suter UW
    J Biomed Mater Res; 1997 Jul; 36(1):65-74. PubMed ID: 9212390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds.
    Deng Y; Zhao K; Zhang XF; Hu P; Chen GQ
    Biomaterials; 2002 Oct; 23(20):4049-56. PubMed ID: 12182306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration.
    Hsu SH; Chang SH; Yen HJ; Whu SW; Tsai CL; Chen DC
    Artif Organs; 2006 Jan; 30(1):42-55. PubMed ID: 16409397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiblock copolyesters as biomaterials: in vitro biocompatibility testing.
    Saad B; Keiser OM; Welti M; Uhlschmid GK; Neuenschwander P; Suter UW
    J Mater Sci Mater Med; 1997 Aug; 8(8):497-505. PubMed ID: 15348717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D; Grad S; Gogolewski S; Alini M
    J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro.
    van Susante JLC ; Pieper J; Buma P; van Kuppevelt TH; van Beuningen H; van Der Kraan PM; Veerkamp JH; van den Berg WB; Veth RPH
    Biomaterials; 2001 Sep; 22(17):2359-69. PubMed ID: 11511033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems.
    Hu Y; Grainger DW; Winn SR; Hollinger JO
    J Biomed Mater Res; 2002 Mar; 59(3):563-72. PubMed ID: 11774315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic porous scaffolds made from poly(L-lactide)-g-chondroitin sulfate blend with poly(L-lactide) for cartilage tissue engineering.
    Lee CT; Huang CP; Lee YD
    Biomacromolecules; 2006 Jul; 7(7):2200-9. PubMed ID: 16827588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone generation on PHBV matrices: an in vitro study.
    Köse GT; Korkusuz F; Korkusuz P; Purali N; Ozkul A; Hasirci V
    Biomaterials; 2003 Dec; 24(27):4999-5007. PubMed ID: 14559013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.