BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 10606040)

  • 1. Effects of postnatal ethanol exposure on brain growth and lipid composition in n-3 fatty acid-deficient and -adequate rats.
    Ward GR; Xing HC; Wainwright PE
    Lipids; 1999 Nov; 34(11):1177-86. PubMed ID: 10606040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of prenatal ethanol and long-chain n-3 fatty acid supplementation on development in mice. 2. Fatty acid composition of brain membrane phospholipids.
    Wainwright PE; Huang YS; Simmons V; Mills DE; Ward RP; Ward GR; Winfield D; McCutcheon D
    Alcohol Clin Exp Res; 1990 Jun; 14(3):413-20. PubMed ID: 2143055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small changes of dietary (n-6) and (n-3)/fatty acid content ration alter phosphatidylethanolamine and phosphatidylcholine fatty acid composition during development of neuronal and glial cells in rats.
    Jumpsen J; Lien EL; Goh YK; Clandinin MT
    J Nutr; 1997 May; 127(5):724-31. PubMed ID: 9164993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water maze performance is unaffected in artificially reared rats fed diets supplemented with arachidonic acid and docosahexaenoic acid.
    Wainwright PE; Xing HC; Ward GR; Huang YS; Bobik E; Auestad N; Montalto M
    J Nutr; 1999 May; 129(5):1079-89. PubMed ID: 10222403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-chain polyunsaturated fatty acid levels in formulae influence deposition of docosahexaenoic acid and arachidonic acid in brain and red blood cells of artificially reared neonatal rats.
    Ward GR; Huang YS; Bobik E; Xing HC; Mutsaers L; Auestad N; Montalto M; Wainwright P
    J Nutr; 1998 Dec; 128(12):2473-87. PubMed ID: 9868196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary fatty acid profile influences the composition of skeletal muscle phospholipids in rats.
    Ayre KJ; Hulbert AJ
    J Nutr; 1996 Mar; 126(3):653-62. PubMed ID: 8598550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary prenatal lipids affect myelin gene expression in postnatal undernourished rats.
    Salvati S; Attorri L; Avellino C; Di Biase A; Sanchez M
    Nutr Neurosci; 2002 Sep; 5(4):243-50. PubMed ID: 12168687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary fat influences the effect of zinc deficiency on liver lipids and fatty acids in rats force-fed equal quantities of diet.
    Eder K; Kirchgessner M
    J Nutr; 1994 Oct; 124(10):1917-26. PubMed ID: 7931700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil.
    Song JH; Miyazawa T
    Atherosclerosis; 2001 Mar; 155(1):9-18. PubMed ID: 11223421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary alpha-linolenic acid lowers postprandial lipid levels with increase of eicosapentaenoic and docosahexaenoic acid contents in rat hepatic membrane.
    Kim HK; Choi H
    Lipids; 2001 Dec; 36(12):1331-6. PubMed ID: 11834085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ratio of n-6 to n-3 polyunsaturated fatty acids in the rat diet alters serum lipid levels and lymphocyte functions.
    Jeffery NM; Sanderson P; Sherrington EJ; Newsholme EA; Calder PC
    Lipids; 1996 Jul; 31(7):737-45. PubMed ID: 8827697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neonatal dietary zinc deficiency in artificially reared rat pups retards behavioral development and interacts with essential fatty acid deficiency to alter liver and brain fatty acid composition.
    Wauben IP; Xing HC; Wainwright PE
    J Nutr; 1999 Oct; 129(10):1773-81. PubMed ID: 10498747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of milk formula to enhance accretion of long-chain n-6 and n-3 polyunsaturated fatty acids in artificially reared infant rats.
    Yeh YY; Yeh SM; Lien EL
    Lipids; 1998 May; 33(5):513-20. PubMed ID: 9625599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased blood pressure later in life may be associated with perinatal n-3 fatty acid deficiency.
    Armitage JA; Pearce AD; Sinclair AJ; Vingrys AJ; Weisinger RS; Weisinger HS
    Lipids; 2003 Apr; 38(4):459-64. PubMed ID: 12848294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High dietary 18:3n-3 increases the 18:3n-3 but not the 22:6n-3 content in the whole body, brain, skin, epididymal fat pads, and muscles of suckling rat pups.
    Bowen RA; Clandinin MT
    Lipids; 2000 Apr; 35(4):389-94. PubMed ID: 10858023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversal of diet-induced changes in adenylate cyclase activity and fatty acid composition of rat submandibular salivary gland lipids.
    Alam SQ; Mannino SJ; Alam BS
    Arch Oral Biol; 1993 May; 38(5):387-91. PubMed ID: 8328920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effects of stress and omega-3 fatty acid deprivation on emotional response and brain lipid composition in adult rats.
    Mathieu G; Denis S; Lavialle M; Vancassel S
    Prostaglandins Leukot Essent Fatty Acids; 2008 Jun; 78(6):391-401. PubMed ID: 18579362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial rearing of infant rats on milk formula deficient in n-3 essential fatty acids: a rapid method for the production of experimental n-3 deficiency.
    Ward G; Woods J; Reyzer M; Salem N
    Lipids; 1996 Jan; 31(1):71-7. PubMed ID: 8649237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of n-3 long-chain polyunsaturated fatty acids with n-6 fatty acids in suckled rat pups.
    Boyle FG; Yuhas RJ; Goldberg K; Lien EL
    Lipids; 1998 Mar; 33(3):243-50. PubMed ID: 9560798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maternal diets affected ceramides and fatty acids in brain regions of neonatal rats with prenatal ethanol exposure.
    Wang Y; Feltham BA; Louis XL; Eskin MNA; Suh M
    Nutr Neurosci; 2023 Jan; 26(1):60-71. PubMed ID: 34957933
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.