BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

662 related articles for article (PubMed ID: 10606272)

  • 1. Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability.
    Mazroui R; Puoti A; Krämer A
    RNA; 1999 Dec; 5(12):1615-31. PubMed ID: 10606272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation of functional domains involved in RNA binding and protein-protein interactions in human and Saccharomyces cerevisiae pre-mRNA splicing factor SF1.
    Rain JC; Rafi Z; Rhani Z; Legrain P; Krämer A
    RNA; 1998 May; 4(5):551-65. PubMed ID: 9582097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA.
    Arning S; Grüter P; Bilbe G; Krämer A
    RNA; 1996 Aug; 2(8):794-810. PubMed ID: 8752089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of RNA branch point sequences by the KH domain of splicing factor 1 (mammalian branch point binding protein) in a splicing factor complex.
    Peled-Zehavi H; Berglund JA; Rosbash M; Frankel AD
    Mol Cell Biol; 2001 Aug; 21(15):5232-41. PubMed ID: 11438677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple U2AF65 binding sites within SF3b155: thermodynamic and spectroscopic characterization of protein-protein interactions among pre-mRNA splicing factors.
    Thickman KR; Swenson MC; Kabogo JM; Gryczynski Z; Kielkopf CL
    J Mol Biol; 2006 Feb; 356(3):664-83. PubMed ID: 16376933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, phosphorylation and U2AF65 binding of the N-terminal domain of splicing factor 1 during 3'-splice site recognition.
    Zhang Y; Madl T; Bagdiul I; Kern T; Kang HS; Zou P; Mäusbacher N; Sieber SA; Krämer A; Sattler M
    Nucleic Acids Res; 2013 Jan; 41(2):1343-54. PubMed ID: 23175611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of splicing factor SF1 on Ser20 by cGMP-dependent protein kinase regulates spliceosome assembly.
    Wang X; Bruderer S; Rafi Z; Xue J; Milburn PJ; Krämer A; Robinson PJ
    EMBO J; 1999 Aug; 18(16):4549-59. PubMed ID: 10449420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization and protein-protein interactions of trypanosome splicing factors U2AF35, U2AF65 and SF1.
    Vazquez MP; Mualem D; Bercovich N; Stern MZ; Nyambega B; Barda O; Nasiga D; Gupta SK; Michaeli S; Levin MJ
    Mol Biochem Parasitol; 2009 Apr; 164(2):137-46. PubMed ID: 19320097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure and ligand recognition of the WW domain pair of the yeast splicing factor Prp40.
    Wiesner S; Stier G; Sattler M; Macias MJ
    J Mol Biol; 2002 Dec; 324(4):807-22. PubMed ID: 12460579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The branchpoint binding protein: in and out of the spliceosome cycle.
    Rymond BC
    Adv Exp Med Biol; 2010; 693():123-41. PubMed ID: 21189690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Will the circle be unbroken: specific mutations in the yeast Sm protein ring expose a requirement for assembly factor Brr1, a homolog of Gemin2.
    Schwer B; Roth AJ; Shuman S
    RNA; 2017 Mar; 23(3):420-430. PubMed ID: 27974620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. U2AF35 is encoded by an essential gene clustered in an operon with RRM/cyclophilin in Caenorhabditis elegans.
    Zorio DA; Blumenthal T
    RNA; 1999 Apr; 5(4):487-94. PubMed ID: 10199565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly.
    Rutz B; Séraphin B
    RNA; 1999 Jun; 5(6):819-31. PubMed ID: 10376880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins.
    Crisci A; Raleff F; Bagdiul I; Raabe M; Urlaub H; Rain JC; Krämer A
    Nucleic Acids Res; 2015 Dec; 43(21):10456-73. PubMed ID: 26420826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Drosophila RNA-binding protein RBP1 is localized to transcriptionally active sites of chromosomes and shows a functional similarity to human splicing factor ASF/SF2.
    Kim YJ; Zuo P; Manley JL; Baker BS
    Genes Dev; 1992 Dec; 6(12B):2569-79. PubMed ID: 1340470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast ortholog of the Drosophila crooked neck protein promotes spliceosome assembly through stable U4/U6.U5 snRNP addition.
    Chung S; McLean MR; Rymond BC
    RNA; 1999 Aug; 5(8):1042-54. PubMed ID: 10445879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP.
    Selenko P; Gregorovic G; Sprangers R; Stier G; Rhani Z; Krämer A; Sattler M
    Mol Cell; 2003 Apr; 11(4):965-76. PubMed ID: 12718882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CUS2, a yeast homolog of human Tat-SF1, rescues function of misfolded U2 through an unusual RNA recognition motif.
    Yan D; Perriman R; Igel H; Howe KJ; Neville M; Ares M
    Mol Cell Biol; 1998 Sep; 18(9):5000-9. PubMed ID: 9710584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals.
    Abovich N; Rosbash M
    Cell; 1997 May; 89(3):403-12. PubMed ID: 9150140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Drosophila melanogaster genes encoding RRM-type RNA-binding proteins identified by a degenerate PCR strategy.
    Brand SF; Pichoff S; Noselli S; Bourbon HM
    Gene; 1995 Mar; 154(2):187-92. PubMed ID: 7890163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.