These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10606502)

  • 1. Differential effects of alcohol on rod and cone temporal processing.
    Pearson P; Timney B
    J Stud Alcohol; 1999 Nov; 60(6):879-83. PubMed ID: 10606502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alcohol Intoxication Impairs Mesopic Rod and Cone Temporal Processing in Social Drinkers.
    Zhuang X; Kang P; King A; Cao D
    Alcohol Clin Exp Res; 2015 Sep; 39(9):1842-9. PubMed ID: 26247196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flicker assessment of rod and cone function in a model of retinal degeneration.
    Rubin GR; Kraft TW
    Doc Ophthalmol; 2007 Nov; 115(3):165-72. PubMed ID: 17674067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dark-adapted rod suppression of cone flicker detection: Evaluation of receptoral and postreceptoral interactions.
    Cao D; Zele AJ; Pokorny J
    Vis Neurosci; 2006; 23(3-4):531-7. PubMed ID: 16961991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoreceptor-specific light adaptation of critical flicker frequency in trichromat and dichromat observers.
    Huchzermeyer C; Martins CMG; Nagy B; Barboni MTS; Ventura DF; Costa MF; Kremers J
    J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):B106-B113. PubMed ID: 29603928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cone dystrophy with "supernormal" rod ERG: psychophysical testing shows comparable rod and cone temporal sensitivity losses with no gain in rod function.
    Stockman A; Henning GB; Michaelides M; Moore AT; Webster AR; Cammack J; Ripamonti C
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):832-40. PubMed ID: 24370833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of human cone photoreceptors to the photopic flicker electroretinogram.
    Verma R; Pianta MJ
    J Vis; 2009 Mar; 9(3):9.1-12. PubMed ID: 19757948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different effects of low Ca2+ on signal transmission from rods and cones to bipolar cells in carp retina.
    Xu HP; Yang XL
    Brain Res; 2002 Dec; 957(1):136-43. PubMed ID: 12443989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrinsic cone-mediated post-receptoral noise inhibits the rod temporal impulse response function.
    Hathibelagal AR; Feigl B; Cao D; Zele AJ
    J Opt Soc Am A Opt Image Sci Vis; 2018 Apr; 35(4):B72-B77. PubMed ID: 29603925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesopic luminance assessed with minimum motion photometry.
    Raphael S; MacLeod DI
    J Vis; 2011 Aug; 11(9):. PubMed ID: 21868482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral suppression of mesopic rod and cone flicker detection.
    Cao D; Lu YH
    J Opt Soc Am A Opt Image Sci Vis; 2012 Feb; 29(2):A188-93. PubMed ID: 22330377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision in observers with enhanced S-cone syndrome: an excess of s-cones but connected mainly to conventional s-cone pathways.
    Ripamonti C; Aboshiha J; Henning GB; Sergouniotis PI; Michaelides M; Moore AT; Webster AR; Stockman A
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):963-76. PubMed ID: 24425859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatic rod-cone interaction during dark adaptation.
    Stabell B; Stabell U
    J Opt Soc Am A Opt Image Sci Vis; 1998 Nov; 15(11):2809-15. PubMed ID: 9803541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal analysis of electroretinographic responses in fishes with rod-dominated and mixed rod-cone retina.
    Milosević M; Visnjić-Jeftić Z; Damjanović I; Nikcević M; Andjus P; Gacić Z
    Gen Physiol Biophys; 2009 Sep; 28(3):276-82. PubMed ID: 20037193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesopic state: cellular mechanisms involved in pre- and post-synaptic mixing of rod and cone signals.
    Krizaj D
    Microsc Res Tech; 2000 Sep; 50(5):347-59. PubMed ID: 10941171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rod- versus cone-driven ERGs at different stimulus sizes in normal subjects and retinitis pigmentosa patients.
    Aher AJ; McKeefry DJ; Parry NRA; Maguire J; Murray IJ; Tsai TI; Huchzermeyer C; Kremers J
    Doc Ophthalmol; 2018 Feb; 136(1):27-43. PubMed ID: 29134295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rod- and cone-isolated flicker electroretinograms and their response summation characteristics.
    McAnany JJ; Park JC; Cao D
    Vis Neurosci; 2015 Jan; 32():E018. PubMed ID: 26241372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cone-rod dependence in the rat retina: variation with the rate of rod damage.
    Chrysostomou V; Valter K; Stone J
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3017-23. PubMed ID: 19182251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rod and cone pathway signaling and interaction under mesopic illumination.
    Zele AJ; Maynard ML; Feigl B
    J Vis; 2013 Jan; 13(1):. PubMed ID: 23325348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal 8-Hz flicker electroretinograms in carriers of X-linked retinoschisis.
    McAnany JJ; Park JC; Collison FT; Fishman GA; Stone EM
    Doc Ophthalmol; 2016 Aug; 133(1):61-70. PubMed ID: 27369766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.