BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 10606626)

  • 1. Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment.
    Im SH; Barchan D; Fuchs S; Souroujon MC
    J Clin Invest; 1999 Dec; 104(12):1723-30. PubMed ID: 10606626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor.
    Yi HJ; Chae CS; So JS; Tzartos SJ; Souroujon MC; Fuchs S; Im SH
    Mol Immunol; 2008 Nov; 46(1):192-201. PubMed ID: 18799218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oral administration of acetylcholine receptor: effects on experimental myasthenia gravis.
    Okumura S; McIntosh K; Drachman DB
    Ann Neurol; 1994 Nov; 36(5):704-13. PubMed ID: 7979216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of tolerogen conformation in induction of oral tolerance in experimental autoimmune myasthenia gravis.
    Im SH; Barchan D; Souroujon MC; Fuchs S
    J Immunol; 2000 Oct; 165(7):3599-605. PubMed ID: 11034361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T cell reactivity to acetylcholine receptor in rats orally tolerized against experimental autoimmune myasthenia gravis.
    Wang ZY; Qiao J; Melms A; Link H
    Cell Immunol; 1993 Dec; 152(2):394-404. PubMed ID: 8258147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of nasal tolerance induced by a recombinant fragment of acetylcholine receptor for treatment of experimental myasthenia gravis.
    Im SH; Barchan D; Fuchs S; Souroujon MC
    J Neuroimmunol; 2000 Nov; 111(1-2):161-8. PubMed ID: 11063834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunosuppression of rat myasthenia gravis by oral administration of a syngeneic acetylcholine receptor fragment.
    Maiti PK; Feferman T; Im SH; Souroujon MC; Fuchs S
    J Neuroimmunol; 2004 Jul; 152(1-2):112-20. PubMed ID: 15223243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of the T cell immune response to acetylcholine receptor in experimental autoimmune myasthenia gravis. Response to subunits and synthetic peptides.
    Fujii Y; Lindstrom J
    J Immunol; 1988 Mar; 140(6):1830-7. PubMed ID: 2450133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the initial trigger of myasthenia gravis and suppression of the disease by antibodies against the MHC peptide region involved in the presentation of a pathogenic T-cell epitope.
    Atassi MZ; Oshima M; Deitiker P
    Crit Rev Immunol; 2001; 21(1-3):1-27. PubMed ID: 11642597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of nasal tolerance induction in experimental autoimmune myasthenia gravis: identification of regulatory cells.
    Shi FD; Li H; Wang H; Bai X; van der Meide PH; Link H; Ljunggren HG
    J Immunol; 1999 May; 162(10):5757-63. PubMed ID: 10229808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental autoimmune myasthenia gravis may occur in the context of a polarized Th1- or Th2-type immune response in rats.
    Saoudi A; Bernard I; Hoedemaekers A; Cautain B; Martinez K; Druet P; De Baets M; Guéry JC
    J Immunol; 1999 Jun; 162(12):7189-97. PubMed ID: 10358165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Animal models of myasthenia gravis.
    Christadoss P; Poussin M; Deng C
    Clin Immunol; 2000 Feb; 94(2):75-87. PubMed ID: 10637092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4.
    Im SH; Barchan D; Maiti PK; Fuchs S; Souroujon MC
    J Immunol; 2001 Jun; 166(11):6893-8. PubMed ID: 11359850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells.
    Duan RS; Adikari SB; Huang YM; Link H; Xiao BG
    Neurobiol Dis; 2004 Jul; 16(2):461-7. PubMed ID: 15193302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis.
    Wang HB; Shi FD; Li H; van der Meide PH; Ljunggren HG; Link H
    Clin Immunol; 2000 May; 95(2):156-62. PubMed ID: 10779409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of myasthenia gravis by antigen-specific mucosal tolerance and modulation of cytokines and costimulatory factors.
    Souroujon MC; Maiti PK; Feferman T; Im SH; Raveh L; Fuchs S
    Ann N Y Acad Sci; 2003 Sep; 998():533-6. PubMed ID: 14592924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis.
    Xiao BG; Duan RS; Zhu WH; Lu CZ
    Cell Immunol; 2006 Jun; 241(2):95-101. PubMed ID: 17005165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FK506 prevents induction of rat experimental autoimmune myasthenia gravis.
    Yoshikawa H; Iwasa K; Satoh K; Takamori M
    J Autoimmun; 1997 Feb; 10(1):11-6. PubMed ID: 9080295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined short-term immunotherapy for experimental autoimmune myasthenia gravis.
    Pestronk A; Drachman DB; Teoh R; Adams RN
    Ann Neurol; 1983 Aug; 14(2):235-41. PubMed ID: 6354071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the anti-acetylcholine receptor response and experimental autoimmune myasthenia gravis by recombinant fragments of the acetylcholine receptor.
    Barchan D; Asher O; Tzartos SJ; Fuchs S; Souroujon MC
    Eur J Immunol; 1998 Feb; 28(2):616-24. PubMed ID: 9521072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.