BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10606735)

  • 61. Ultra-structural time-course study in the C. elegans model for Duchenne muscular dystrophy highlights a crucial role for sarcomere-anchoring structures and sarcolemma integrity in the earliest steps of the muscle degeneration process.
    Brouilly N; Lecroisey C; Martin E; Pierson L; Mariol MC; Qadota H; Labouesse M; Streichenberger N; Mounier N; Gieseler K
    Hum Mol Genet; 2015 Nov; 24(22):6428-45. PubMed ID: 26358775
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Heterogous dystrophin mRNA produced by a novel splice acceptor site mutation in intermediate dystrophinopathy.
    Adachi K; Takeshima Y; Wada H; Yagi M; Nakamura H; Matsuo M
    Pediatr Res; 2003 Jan; 53(1):125-31. PubMed ID: 12508091
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Unc-45 mutations in Caenorhabditis elegans implicate a CRO1/She4p-like domain in myosin assembly.
    Barral JM; Bauer CC; Ortiz I; Epstein HF
    J Cell Biol; 1998 Nov; 143(5):1215-25. PubMed ID: 9832550
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Measuring Movement to Determine Physiological Roles of Acetylcholinesterase Classes in Caenorhabditis elegans.
    Melstrom PC; Williams PL
    J Nematol; 2007 Dec; 39(4):317-20. PubMed ID: 19259505
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Clinic Of the Blood Protein Body With Special Consideration Of the Dys- and Paraproteinamias].
    WUHRMANN F
    Helv Med Acta; 1945 Jul; 12():713-61. PubMed ID: 21009956
    [No Abstract]   [Full Text] [Related]  

  • 66. Cross-species modeling of muscular dystrophy in Caenorhabditis elegans using patient-derived extracellular vesicles.
    Shalash R; Levi-Ferber M; Cohen C; Dori A; Brodie C; Henis-Korenblit S
    Dis Model Mech; 2024 Mar; 17(3):. PubMed ID: 38501170
    [TBL] [Abstract][Full Text] [Related]  

  • 67.
    Ellwood RA; Piasecki M; Szewczyk NJ
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34063069
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Physical exertion exacerbates decline in the musculature of an animal model of Duchenne muscular dystrophy.
    Hughes KJ; Rodriguez A; Flatt KM; Ray S; Schuler A; Rodemoyer B; Veerappan V; Cuciarone K; Kullman A; Lim C; Gutta N; Vemuri S; Andriulis V; Niswonger D; Barickman L; Stein W; Singhvi A; Schroeder NE; Vidal-Gadea AG
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3508-3517. PubMed ID: 30755520
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Muscle strength deficiency and mitochondrial dysfunction in a muscular dystrophy model of
    Hewitt JE; Pollard AK; Lesanpezeshki L; Deane CS; Gaffney CJ; Etheridge T; Szewczyk NJ; Vanapalli SA
    Dis Model Mech; 2018 Dec; 11(12):. PubMed ID: 30396907
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Reduced IGF signaling prevents muscle cell death in a Caenorhabditis elegans model of muscular dystrophy.
    Oh KH; Kim H
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):19024-9. PubMed ID: 24191049
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dystrobrevin controls neurotransmitter release and muscle Ca(2+) transients by localizing BK channels in Caenorhabditis elegans.
    Chen B; Liu P; Zhan H; Wang ZW
    J Neurosci; 2011 Nov; 31(48):17338-47. PubMed ID: 22131396
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Neural integrity is maintained by dystrophin in C. elegans.
    Zhou S; Chen L
    J Cell Biol; 2011 Jan; 192(2):349-63. PubMed ID: 21242290
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The roles of the dystrophin-associated glycoprotein complex at the synapse.
    Pilgram GS; Potikanond S; Baines RA; Fradkin LG; Noordermeer JN
    Mol Neurobiol; 2010 Feb; 41(1):1-21. PubMed ID: 19899002
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular and biochemical characterization of kettin in Caenorhabditis elegans.
    Ono S; Mohri K; Ono K
    J Muscle Res Cell Motil; 2005; 26(6-8):449-54. PubMed ID: 16453162
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mutations in the dystrophin-like dys-1 gene of Caenorhabditis elegans result in reduced acetylcholinesterase activity.
    Giugia J; Gieseler K; Arpagaus M; Ségalat L
    FEBS Lett; 1999 Dec; 463(3):270-2. PubMed ID: 10606735
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission.
    Bessou C; Giugia JB; Franks CJ; Holden-Dye L; Ségalat L
    Neurogenetics; 1998 Dec; 2(1):61-72. PubMed ID: 9933302
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genetic suppression of phenotypes arising from mutations in dystrophin-related genes in Caenorhabditis elegans.
    Gieseler K; Grisoni K; Ségalat L
    Curr Biol; 2000 Sep; 10(18):1092-7. PubMed ID: 10996789
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Gene expression profiling studies on Caenorhabditis elegans dystrophin mutants dys-1(cx-35) and dys-1(cx18).
    Towers PR; Lescure P; Baban D; Malek JA; Duarte J; Jones E; Davies KE; Ségalat L; Sattelle DB
    Genomics; 2006 Nov; 88(5):642-9. PubMed ID: 16962739
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Acetylcholinesterase genes in the nematode Caenorhabditis elegans.
    Combes D; Fedon Y; Toutant JP; Arpagaus M
    Int Rev Cytol; 2001; 209():207-39. PubMed ID: 11580201
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.