BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10607550)

  • 1. Factors affecting membrane permeability and ionic homeostasis in the cold-submerged frog.
    Donohoe PH; West TG; Boutilier RG
    J Exp Biol; 2000 Jan; 203(Pt 2):405-14. PubMed ID: 10607550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive plasticity of skeletal muscle energetics in hibernating frogs: mitochondrial proton leak during metabolic depression.
    Boutilier RG; St-Pierre J
    J Exp Biol; 2002 Aug; 205(Pt 15):2287-96. PubMed ID: 12110662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balance of unidirectional monovalent ion fluxes in cells undergoing apoptosis: why does Na+/K+ pump suppression not cause cell swelling?
    Yurinskaya VE; Rubashkin AA; Vereninov AA
    J Physiol; 2011 May; 589(Pt 9):2197-211. PubMed ID: 21486767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle in vivo.
    Murphy KT; Nielsen OB; Clausen T
    Exp Physiol; 2008 Dec; 93(12):1249-62. PubMed ID: 18586859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative, in situ approach to examining K+ flux in resting skeletal muscle.
    Lindinger MI; Hawke TJ; Vickery L; Bradford L; Lipskie SL
    Can J Physiol Pharmacol; 2001 Dec; 79(12):996-1006. PubMed ID: 11824943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of internal Na and external K concentrations on Na/K coupling of Na,K-pump in frog skeletal muscle.
    Marunaka Y
    J Membr Biol; 1988; 101(1):19-31. PubMed ID: 2835486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise.
    Sejersted OM; Sjøgaard G
    Physiol Rev; 2000 Oct; 80(4):1411-81. PubMed ID: 11015618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of lithium ions with the sodium-potassium pump in frog skeletal muscle.
    Beaugé L
    J Physiol; 1975 Mar; 246(2):397-420. PubMed ID: 1079873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na
    Stecyk JA; Farrell AP; Vornanen M
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Apr; 206():11-16. PubMed ID: 28089857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Acetylcholine activation of the sodium pump in frog muscle].
    Platonova RD; Poskonova MA; Rodionov IM
    Fiziol Zh SSSR Im I M Sechenova; 1986 Jul; 72(7):921-5. PubMed ID: 3019789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature and ouabain on th Na+--K+ activated membrane ATPase and electrogenic ionic pump of the golden hamster and mouse diaphragm.
    Dlouhá H; Donselaar Y; Teisinger J; Vyskocil F
    Physiol Bohemoslov; 1980; 29(6):543-52. PubMed ID: 6259677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of sodium pump blockade and denervation on the steady-state sodium permeability of mouse skeletal muscle fibres.
    Seabrooke SR; Ward MR; White NK
    Q J Exp Physiol; 1988 Jul; 73(4):561-72. PubMed ID: 2845463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HMG CoA reductase inhibition reduces sarcolemmal Na(+)-K(+) pump density.
    Gray DF; Bundgaard H; Hansen PS; Buhagiar KA; Mihailidou AS; Jessup W; Kjeldsen K; Rasmussen HH
    Cardiovasc Res; 2000 Aug; 47(2):329-35. PubMed ID: 10946069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation by sanguinarine of active sodium efflux from frog skeletal muscle in the presence of ouabain.
    Moore RD; Rabovsky JL
    J Physiol; 1979 Oct; 295():1-20. PubMed ID: 230333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Na+,K+-pumps and transmembrane Na+,K+-distribution in muscle function. The FEPS lecture - Bratislava 2007.
    Clausen T
    Acta Physiol (Oxf); 2008 Mar; 192(3):339-49. PubMed ID: 17988242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Na(+)-K+ pump activity in contracting rat muscle.
    Nielsen OB; Clausen T
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):571-81. PubMed ID: 9379412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+ and K+ transport at basolateral membranes of epithelial cells. I. Stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):467-83. PubMed ID: 2420919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.