These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10607550)

  • 41. Functional correlates of Na+,K+-ATPase in lean and obese (ob/ob) mice.
    Lin MH; Romsos DR; Akera T; Leveille GA
    Metabolism; 1981 May; 30(5):431-8. PubMed ID: 6262598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Membrane ion transport in erythrocytes of salt hypertensive Dahl rats and their F2 hybrids: the importance of cholesterol.
    Vokurková M; Dobesová Z; Kunes J; Zicha J
    Hypertens Res; 2003 May; 26(5):397-404. PubMed ID: 12887131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of hyperoxia on type II cell Na-K-ATPase function and expression.
    Carter EP; Wangensteen OD; O'Grady SM; Ingbar DH
    Am J Physiol; 1997 Mar; 272(3 Pt 1):L542-51. PubMed ID: 9124612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The sensitivity of insulin-stimulated and basal Na efflux to ouabain in frog skeletal muscle cells.
    Marunaka Y
    Gen Pharmacol; 1991; 22(5):949-54. PubMed ID: 1662174
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of the membrane stabilizer diphenylhydantoin on potassium and sodium movements in skeletal muscle.
    O'Donnell JM; Kovács T; Szábó B
    Pflugers Arch; 1975 Jul; 358(3):275-88. PubMed ID: 1081681
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of the internal Na concentration on the electrogenicity of the insulin-stimulated Na,K-pump in frog skeletal muscles.
    Marunaka Y
    Comp Biochem Physiol A Comp Physiol; 1987; 86(1):133-6. PubMed ID: 2881643
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contribution of an electrogenic sodium pump to membrane potential in mammalian skeletal muscle fibres.
    Akaike N
    J Physiol; 1975 Mar; 245(3):499-520. PubMed ID: 1142216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The kinetics of ouabain-sensitive ionic transport in the rabbit carotid artery.
    Heidlage JF; Jones AW
    J Physiol; 1981 Aug; 317():243-62. PubMed ID: 7310733
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interdependence of ion transport and the action of quabain in heart muscle.
    Bentfeld M; Lüllmann H; Peters T; Proppe D
    Br J Pharmacol; 1977 Sep; 61(1):19-27. PubMed ID: 912208
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of insulin upon membrane-bound (Na+ + K+)-ATPase extracted from frog skeletal muscle.
    Gavryck WA; Moore RD; Thompson RC
    J Physiol; 1975 Oct; 252(1):43-58. PubMed ID: 127836
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Na(+)-K(+)-ATPase-mediated basolateral rubidium uptake in the maturing rabbit cortical collecting duct.
    Constantinescu AR; Lane JC; Mak J; Zavilowitz B; Satlin LM
    Am J Physiol Renal Physiol; 2000 Dec; 279(6):F1161-8. PubMed ID: 11097635
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of fatiguing stimulation on intracellular Na+ and K+ in frog skeletal muscle.
    Balog EM; Fitts RH
    J Appl Physiol (1985); 1996 Aug; 81(2):679-85. PubMed ID: 8872634
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein kinases A and C stimulate the Na+ active transport in frog skeletal muscle without an appreciable change in the number of sarcolemmal Na+ pumps.
    Venosa RA
    Acta Physiol Scand; 2005 Dec; 185(4):329-34. PubMed ID: 16266374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stimulation of Na,K-ATPase activity of frog skeletal muscle by insulin.
    Kanbe M; Kitasato H
    Biochem Biophys Res Commun; 1986 Jan; 134(2):609-16. PubMed ID: 3004457
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3H]ouabain binding) in rat skeletal muscle.
    McKenna MJ; Gissel H; Clausen T
    J Physiol; 2003 Mar; 547(Pt 2):567-80. PubMed ID: 12562912
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancement (by ATP, insulin, and lack of divalent cations) of ouabain inhibition of cation transport and ouabain binding in frog skeletal muscle; effect of insulin and ouabain on sarcolemmal (Na + K)MgATPase.
    Manery JF; Dryden EE; Still JS; Madapallimattam G
    Can J Physiol Pharmacol; 1977 Feb; 55(1):21-33. PubMed ID: 139199
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intact vesicles of canine cardiac sarcolemma: evidence from vectorial properties of Na+, K+-ATPase.
    Besch HR; Jones LR; Watanabe AM
    Circ Res; 1976 Oct; 39(4):586-95. PubMed ID: 183913
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An intracellular ATP-activated, calcium-permeable conductance on the basolateral membrane of single renal proximal tubule cells isolated from Rana temporaria.
    Robson L; Hunter M
    J Physiol; 2000 Mar; 523 Pt 2(Pt 2):301-11. PubMed ID: 10699076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells.
    Sjodin RA; Beaugé LA
    J Gen Physiol; 1973 Feb; 61(2):222-50. PubMed ID: 4540059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.