These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

831 related articles for article (PubMed ID: 10607637)

  • 1. Internal models for motor control and trajectory planning.
    Kawato M
    Curr Opin Neurobiol; 1999 Dec; 9(6):718-27. PubMed ID: 10607637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments.
    Flanagan JR; Nakano E; Imamizu H; Osu R; Yoshioka T; Kawato M
    J Neurosci; 1999 Oct; 19(20):RC34. PubMed ID: 10516336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebellum predicts the future motor state.
    Ebner TJ; Pasalar S
    Cerebellum; 2008; 7(4):583-8. PubMed ID: 18850258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem internal models execute motor learning in the cerebellum.
    Honda T; Nagao S; Hashimoto Y; Ishikawa K; Yokota T; Mizusawa H; Ito M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7428-7433. PubMed ID: 29941578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning.
    Popa LS; Streng ML; Hewitt AL; Ebner TJ
    Cerebellum; 2016 Apr; 15(2):93-103. PubMed ID: 26112422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational approaches to motor control.
    Flash T; Sejnowski TJ
    Curr Opin Neurobiol; 2001 Dec; 11(6):655-62. PubMed ID: 11741014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational theory for movement pattern recognition based on optimal movement pattern generation.
    Wada Y; Koike Y; Vatikiotis-Bateson E; Kawato M
    Biol Cybern; 1995 Jun; 73(1):15-25. PubMed ID: 7654846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal models and intermittency: a theoretical account of human tracking behavior.
    Neilson PD; Neilson MD; O'Dwyer NJ
    Biol Cybern; 1988; 58(2):101-12. PubMed ID: 3349110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mosaic model for sensorimotor learning and control.
    Haruno M; Wolpert DM; Kawato M
    Neural Comput; 2001 Oct; 13(10):2201-20. PubMed ID: 11570996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning and production of movement sequences: behavioral, neurophysiological, and modeling perspectives.
    Rhodes BJ; Bullock D; Verwey WB; Averbeck BB; Page MP
    Hum Mov Sci; 2004 Nov; 23(5):699-746. PubMed ID: 15589629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding in voluntary action control.
    Nattkemper D; Ziessler M; Frensch PA
    Neurosci Biobehav Rev; 2010 Jun; 34(7):1092-101. PubMed ID: 20036685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive intermittent control: A computational model explaining motor intermittency observed in human behavior.
    Sakaguchi Y; Tanaka M; Inoue Y
    Neural Netw; 2015 Jul; 67():92-109. PubMed ID: 25897510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does the brain use sliding variables for the control of movements?
    Hanneton S; Berthoz A; Droulez J; Slotine JJ
    Biol Cybern; 1997 Dec; 77(6):381-93. PubMed ID: 9433753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic pattern theory--some implications for therapeutics.
    Scholz JP
    Phys Ther; 1990 Dec; 70(12):827-43. PubMed ID: 2236226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human cerebellar activity reflecting an acquired internal model of a new tool.
    Imamizu H; Miyauchi S; Tamada T; Sasaki Y; Takino R; Pütz B; Yoshioka T; Kawato M
    Nature; 2000 Jan; 403(6766):192-5. PubMed ID: 10646603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visuomotor control, eye movements, and steering: A unified approach for incorporating feedback, feedforward, and internal models.
    Lappi O; Mole C
    Psychol Bull; 2018 Oct; 144(10):981-1001. PubMed ID: 29888932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sensorimotor map: modulating lateral interactions for anticipation and planning.
    Toussaint M
    Neural Comput; 2006 May; 18(5):1132-55. PubMed ID: 16595060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.