BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 10607920)

  • 1. Complexity of signal transduction mediated by ErbB2: clues to the potential of receptor-targeted cancer therapy.
    Nagy P; Jenei A; Damjanovich S; Jovin TM; Szölôsi J
    Pathol Oncol Res; 1999; 5(4):255-71. PubMed ID: 10607920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ErbB/HER family of protein-tyrosine kinases and cancer.
    Roskoski R
    Pharmacol Res; 2014 Jan; 79():34-74. PubMed ID: 24269963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal transduction of erbB receptors in trastuzumab (Herceptin) sensitive and resistant cell lines: local stimulation using magnetic microspheres as assessed by quantitative digital microscopy.
    Friedländer E; Arndt-Jovin DJ; Nagy P; Jovin TM; Szöllosi J; Vereb G
    Cytometry A; 2005 Oct; 67(2):161-71. PubMed ID: 16163699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiotoxicity in signal transduction therapeutics: erbB2 antibodies and the heart.
    Schneider JW; Chang AY; Rocco TP
    Semin Oncol; 2001 Oct; 28(5 Suppl 16):18-26. PubMed ID: 11706392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ErbB2 signaling network as a target for breast cancer therapy.
    Badache A; Gonçalves A
    J Mammary Gland Biol Neoplasia; 2006 Jan; 11(1):13-25. PubMed ID: 16947083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid rafts and the local density of ErbB proteins influence the biological role of homo- and heteroassociations of ErbB2.
    Nagy P; Vereb G; Sebestyén Z; Horváth G; Lockett SJ; Damjanovich S; Park JW; Jovin TM; Szöllosi J
    J Cell Sci; 2002 Nov; 115(Pt 22):4251-62. PubMed ID: 12376557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers.
    Roskoski R
    Pharmacol Res; 2019 Jan; 139():395-411. PubMed ID: 30500458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors.
    Kirouac DC; Du JY; Lahdenranta J; Overland R; Yarar D; Paragas V; Pace E; McDonagh CF; Nielsen UB; Onsum MD
    Sci Signal; 2013 Aug; 6(288):ra68. PubMed ID: 23943608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into anti-HER-2 receptor monoclonal antibody research.
    Kumar R; Mandal M; Vadlamudi R
    Semin Oncol; 2000 Dec; 27(6 Suppl 11):84-91; discussion 92-100. PubMed ID: 11236033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of ErbB2-mediated paclitaxel resistance and trastuzumab-mediated paclitaxel sensitization in ErbB2-overexpressing breast cancers.
    Yu D
    Semin Oncol; 2001 Oct; 28(5 Suppl 16):12-7. PubMed ID: 11706391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biology of HER2 and its importance in breast cancer.
    Yarden Y
    Oncology; 2001; 61 Suppl 2():1-13. PubMed ID: 11694782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous amplification of HER-2 (ERBB2) and topoisomerase IIalpha (TOP2A) genes--molecular basis for combination chemotherapy in cancer.
    Järvinen TA; Liu ET
    Curr Cancer Drug Targets; 2006 Nov; 6(7):579-602. PubMed ID: 17100565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors.
    Petit AM; Rak J; Hung MC; Rockwell P; Goldstein N; Fendly B; Kerbel RS
    Am J Pathol; 1997 Dec; 151(6):1523-30. PubMed ID: 9403702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides.
    Motoyama AB; Hynes NE; Lane HA
    Cancer Res; 2002 Jun; 62(11):3151-8. PubMed ID: 12036928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circumventing de novo and acquired resistance to trastuzumab: new hope for the care of ErbB2-positive breast cancer.
    Piccart M
    Clin Breast Cancer; 2008 Mar; 8 Suppl 3():S100-13. PubMed ID: 18777949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ErbB2 activation and signal transduction in normal and malignant mammary cells.
    Hynes NE
    J Mammary Gland Biol Neoplasia; 1996 Apr; 1(2):199-206. PubMed ID: 10887493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HDAC inhibitor SNDX-275 enhances efficacy of trastuzumab in erbB2-overexpressing breast cancer cells and exhibits potential to overcome trastuzumab resistance.
    Huang X; Wang S; Lee CK; Yang X; Liu B
    Cancer Lett; 2011 Aug; 307(1):72-79. PubMed ID: 21497990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of ErbB2 by overexpression or by transmembrane neuregulin results in differential signaling and sensitivity to herceptin.
    Yuste L; Montero JC; Esparís-Ogando A; Pandiella A
    Cancer Res; 2005 Aug; 65(15):6801-10. PubMed ID: 16061662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Successful targeting of ErbB2 receptors-is PTEN the key?
    Crowder RJ; Lombardi DP; Ellis MJ
    Cancer Cell; 2004 Aug; 6(2):103-4. PubMed ID: 15324690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased erbB3 promotes erbB2/neu-driven mammary tumor proliferation and co-targeting of erbB2/erbB3 receptors exhibits potent inhibitory effects on breast cancer cells.
    Lyu H; Huang J; Edgerton SM; Thor AD; He Z; Liu B
    Int J Clin Exp Pathol; 2015; 8(6):6143-56. PubMed ID: 26261492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.