These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10608810)

  • 1. A highly conserved mechanism of regulated ribosome stalling mediated by fungal arginine attenuator peptides that appears independent of the charging status of arginyl-tRNAs.
    Wang Z; Gaba A; Sachs MS
    J Biol Chem; 1999 Dec; 274(53):37565-74. PubMed ID: 10608810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionarily conserved features of the arginine attenuator peptide provide the necessary requirements for its function in translational regulation.
    Fang P; Wang Z; Sachs MS
    J Biol Chem; 2000 Sep; 275(35):26710-9. PubMed ID: 10818103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The arginine attenuator peptide interferes with the ribosome peptidyl transferase center.
    Wei J; Wu C; Sachs MS
    Mol Cell Biol; 2012 Jul; 32(13):2396-406. PubMed ID: 22508989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolutionarily conserved eukaryotic arginine attenuator peptide regulates the movement of ribosomes that have translated it.
    Wang Z; Fang P; Sachs MS
    Mol Cell Biol; 1998 Dec; 18(12):7528-36. PubMed ID: 9819438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence requirements for ribosome stalling by the arginine attenuator peptide.
    Spevak CC; Ivanov IP; Sachs MS
    J Biol Chem; 2010 Dec; 285(52):40933-42. PubMed ID: 20884617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginine changes the conformation of the arginine attenuator peptide relative to the ribosome tunnel.
    Wu C; Wei J; Lin PJ; Tu L; Deutsch C; Johnson AE; Sachs MS
    J Mol Biol; 2012 Mar; 416(4):518-33. PubMed ID: 22244852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosome stalling is responsible for arginine-specific translational attenuation in Neurospora crassa.
    Wang Z; Sachs MS
    Mol Cell Biol; 1997 Sep; 17(9):4904-13. PubMed ID: 9271370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense-mediated mRNA decay.
    Gaba A; Jacobson A; Sachs MS
    Mol Cell; 2005 Nov; 20(3):449-60. PubMed ID: 16285926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary changes in the fungal carbamoyl-phosphate synthetase small subunit gene and its associated upstream open reading frame.
    Hood HM; Spevak CC; Sachs MS
    Fungal Genet Biol; 2007 Feb; 44(2):93-104. PubMed ID: 16979358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational regulation in response to changes in amino acid availability in Neurospora crassa.
    Luo Z; Freitag M; Sachs MS
    Mol Cell Biol; 1995 Oct; 15(10):5235-45. PubMed ID: 7565672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Neurospora crassa arg-2 locus. Structure and expression of the gene encoding the small subunit of arginine-specific carbamoyl phosphate synthetase.
    Orbach MJ; Sachs MS; Yanofsky C
    J Biol Chem; 1990 Jul; 265(19):10981-7. PubMed ID: 2141606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical evidence for distinct mechanisms of translational control by upstream open reading frames.
    Gaba A; Wang Z; Krishnamoorthy T; Hinnebusch AG; Sachs MS
    EMBO J; 2001 Nov; 20(22):6453-63. PubMed ID: 11707416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nascent polypeptide domain that can regulate translation elongation.
    Fang P; Spevak CC; Wu C; Sachs MS
    Proc Natl Acad Sci U S A; 2004 Mar; 101(12):4059-64. PubMed ID: 15020769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-pathway and pathway-specific control of amino acid biosynthesis in Magnaporthe grisea.
    Shen WC; Ebbole DJ
    Fungal Genet Biol; 1997 Feb; 21(1):40-9. PubMed ID: 9126616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A UV-induced mutation in neurospora that affects translational regulation in response to arginine.
    Freitag M; Dighde N; Sachs MS
    Genetics; 1996 Jan; 142(1):117-27. PubMed ID: 8770589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide.
    Bhushan S; Meyer H; Starosta AL; Becker T; Mielke T; Berninghausen O; Sattler M; Wilson DN; Beckmann R
    Mol Cell; 2010 Oct; 40(1):138-46. PubMed ID: 20932481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the leader peptide of the yeast gene CPA1 and heterologous regulation by other fungal peptides.
    Delbecq P; Calvo O; Filipkowski RK; Piérard A; Messenguy F
    Curr Genet; 2000 Oct; 38(3):105-12. PubMed ID: 11057443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of an upstream open reading frame in mediating arginine-specific translational control in Neurospora crassa.
    Luo Z; Sachs MS
    J Bacteriol; 1996 Apr; 178(8):2172-7. PubMed ID: 8636015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine-specific regulation mediated by the Neurospora crassa arg-2 upstream open reading frame in a homologous, cell-free in vitro translation system.
    Wang Z; Sachs MS
    J Biol Chem; 1997 Jan; 272(1):255-61. PubMed ID: 8995256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A segment of mRNA encoding the leader peptide of the CPA1 gene confers repression by arginine on a heterologous yeast gene transcript.
    Delbecq P; Werner M; Feller A; Filipkowski RK; Messenguy F; Piérard A
    Mol Cell Biol; 1994 Apr; 14(4):2378-90. PubMed ID: 8139542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.