BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10608814)

  • 1. Probing the folding pathways of long R(3) insulin-like growth factor-I (LR(3)IGF-I) and IGF-I via capture and identification of disulfide intermediates by cyanylation methodology and mass spectrometry.
    Yang Y; Wu J; Watson JT
    J Biol Chem; 1999 Dec; 274(53):37598-604. PubMed ID: 10608814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capture and identification of folding intermediates of cystinyl proteins by cyanylation and mass spectrometry.
    Watson JT; Yang Y; Wu J
    J Mol Graph Model; 2001; 19(1):119-28. PubMed ID: 11381521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping of intermediates during the refolding of recombinant human epidermal growth factor (hEGF) by cyanylation, and subsequent structural elucidation by mass spectrometry.
    Wu J; Yang Y; Watson JT
    Protein Sci; 1998 Apr; 7(4):1017-28. PubMed ID: 9568908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disulfide exchange folding of insulin-like growth factor I.
    Hober S; Forsberg G; Palm G; Hartmanis M; Nilsson B
    Biochemistry; 1992 Feb; 31(6):1749-56. PubMed ID: 1737028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Putative disulfide-forming pathway of porcine insulin precursor during its refolding in vitro.
    Qiao ZS; Guo ZY; Feng YM
    Biochemistry; 2001 Mar; 40(9):2662-8. PubMed ID: 11258877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the disulfide folding pathway of insulin-like growth factor-I.
    Milner SJ; Carver JA; Ballard FJ; Francis GL
    Biotechnol Bioeng; 1999 Mar; 62(6):693-703. PubMed ID: 9951525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refolding of amphioxus insulin-like peptide: implications of a bifurcating evolution of the different folding behavior of insulin and insulin-like growth factor 1.
    Wang S; Guo ZY; Shen L; Zhang YJ; Feng YM
    Biochemistry; 2003 Aug; 42(32):9687-93. PubMed ID: 12911310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of hydrogen/deuterium exchange and cyanylation-based methodology for conformational studies of cystinyl proteins.
    Li X; Chou YT; Husain R; Watson JT
    Anal Biochem; 2004 Aug; 331(1):130-7. PubMed ID: 15246005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative refolding of insulin-like growth factor 1 yields two products of similar thermodynamic stability: a bifurcating protein-folding pathway.
    Miller JA; Narhi LO; Hua QX; Rosenfeld R; Arakawa T; Rohde M; Prestrelski S; Lauren S; Stoney KS; Tsai L
    Biochemistry; 1993 May; 32(19):5203-13. PubMed ID: 8494897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Putative folding pathway of insulin-like growth factor-I.
    Rosenfeld RD; Miller JA; Narhi LO; Hawkins N; Katta V; Lauren S; Weiss MA; Arakawa T
    Arch Biochem Biophys; 1997 Jun; 342(2):298-305. PubMed ID: 9186491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of Arg55/56 to Leu55/Ala56 in insulin-like growth factor-I results in two forms different in disulfide structure and native conformation but similar under reverse-phase conditions.
    Rosenfeld RD; Noone NM; Lauren SL; Rohde MF; Narhi LO; Arakawa T
    J Protein Chem; 1993 Jun; 12(3):247-54. PubMed ID: 8397784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the B-domain of insulin-like growth factor-I influence the oxidative folding to yield products with modified biological properties.
    Milner SJ; Francis GL; Wallace JC; Magee BA; Ballard FJ
    Biochem J; 1995 Jun; 308 ( Pt 3)(Pt 3):865-71. PubMed ID: 8948444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequences of B-chain/domain 1-10/1-9 of insulin and insulin-like growth factor 1 determine their different folding behavior.
    Chen Y; You Y; Jin R; Guo ZY; Feng YM
    Biochemistry; 2004 Jul; 43(28):9225-33. PubMed ID: 15248780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium folding of porcine insulin precursor in the presence of redox buffer: implications for the common intermediates shared by its unfolding/ refolding processes.
    Zhao J; Huang QL; Tang YH; Guo ZY; Qiao ZS; Xu GJ; Feng YM
    Protein Pept Lett; 2008; 15(9):972-9. PubMed ID: 18991774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of native disulfide bonds in the structure and activity of insulin-like growth factor 1: genetic models of protein-folding intermediates.
    Narhi LO; Hua QX; Arakawa T; Fox GM; Tsai L; Rosenfeld R; Holst P; Miller JA; Weiss MA
    Biochemistry; 1993 May; 32(19):5214-21. PubMed ID: 8494898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide models of four possible insulin folding intermediates with two disulfides.
    Jia XY; Guo ZY; Wang Y; Xu Y; Duan SS; Feng YM
    Protein Sci; 2003 Nov; 12(11):2412-9. PubMed ID: 14573855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro refolding of human proinsulin. Kinetic intermediates, putative disulfide-forming pathway folding initiation site, and potential role of C-peptide in folding process.
    Qiao ZS; Min CY; Hua QX; Weiss MA; Feng YM
    J Biol Chem; 2003 May; 278(20):17800-9. PubMed ID: 12624089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The different energetic state of the intra A-chain/domain disulfide of insulin and insulin-like growth factor 1 is mainly controlled by their B-chain/domain.
    Guo ZY; Shen L; Feng YM
    Biochemistry; 2002 Aug; 41(34):10585-92. PubMed ID: 12186542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disulfide exchange folding of disulfide mutants of insulin-like growth factor I in vitro.
    Hober S; Uhlén M; Nilsson B
    Biochemistry; 1997 Apr; 36(15):4616-22. PubMed ID: 9109671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro refolding/unfolding pathways of amphioxus insulin-like peptide: implications for folding behavior of insulin family proteins.
    Chen Y; Jin R; Dong HY; Feng YM
    J Biol Chem; 2004 Dec; 279(53):55224-33. PubMed ID: 15501824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.