BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10608829)

  • 1. The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol.
    Poderoso JJ; Lisdero C; Schöpfer F; Riobó N; Carreras MC; Cadenas E; Boveris A
    J Biol Chem; 1999 Dec; 274(53):37709-16. PubMed ID: 10608829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage.
    Schöpfer F; Riobó N; Carreras MC; Alvarez B; Radi R; Boveris A; Cadenas E; Poderoso JJ
    Biochem J; 2000 Jul; 349(Pt 1):35-42. PubMed ID: 10861208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of peroxynitrite in the mitochondrial matrix.
    Valdez LB; Alvarez S; Arnaiz SL; Schöpfer F; Carreras MC; Poderoso JJ; Boveris A
    Free Radic Biol Med; 2000 Aug; 29(3-4):349-56. PubMed ID: 11035264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways.
    Staniek K; Gille L; Kozlov AV; Nohl H
    Free Radic Res; 2002 Apr; 36(4):381-7. PubMed ID: 12069101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen dependence of mitochondrial nitric oxide synthase activity.
    Alvarez S; Valdez LB; Zaobornyj T; Boveris A
    Biochem Biophys Res Commun; 2003 Jun; 305(3):771-5. PubMed ID: 12763059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools.
    James AM; Cochemé HM; Smith RA; Murphy MP
    J Biol Chem; 2005 Jun; 280(22):21295-312. PubMed ID: 15788391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the pathways of nitric oxide utilization in mitochondria.
    Cadenas E; Poderoso JJ; Antunes F; Boveris A
    Free Radic Res; 2000 Dec; 33(6):747-56. PubMed ID: 11237097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free radical chemistry in biological systems.
    Valdez LB; Lores Arnaiz S; Bustamante J; Alvarez S; Costa LE; Boveris A
    Biol Res; 2000; 33(2):65-70. PubMed ID: 15693272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible inhibition of cytochrome c oxidase by peroxynitrite proceeds through ascorbate-dependent generation of nitric oxide.
    Barone MC; Darley-Usmar VM; Brookes PS
    J Biol Chem; 2003 Jul; 278(30):27520-4. PubMed ID: 12743113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance.
    Poderoso JJ; Carreras MC; Schöpfer F; Lisdero CL; Riobó NA; Giulivi C; Boveris AD; Boveris A; Cadenas E
    Free Radic Biol Med; 1999 Apr; 26(7-8):925-35. PubMed ID: 10232836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles.
    Poderoso JJ; Carreras MC; Lisdero C; Riobó N; Schöpfer F; Boveris A
    Arch Biochem Biophys; 1996 Apr; 328(1):85-92. PubMed ID: 8638942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide and peroxynitrite interactions with mitochondria.
    Radi R; Cassina A; Hodara R
    Biol Chem; 2002; 383(3-4):401-9. PubMed ID: 12033431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of a bound ubiquinone on reactions of the Escherichia coli cytochrome bo with ubiquinol and dioxygen.
    Mogi T; Sato-Watanabe M; Miyoshi H; Orii Y
    FEBS Lett; 1999 Aug; 457(2):223-6. PubMed ID: 10471783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible inhibition of electron transfer in the ubiquinol. Cytochrome c reductase segment of the mitochondrial respiratory chain in hibernating ground squirrels.
    Brustovetsky NN; Amerkhanov ZG; Popova EYu ; Konstantinov AA
    FEBS Lett; 1990 Apr; 263(1):73-6. PubMed ID: 2332054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of mitochondrial respiration by oxygen and nitric oxide.
    Boveris A; Costa LE; Poderoso JJ; Carreras MC; Cadenas E
    Ann N Y Acad Sci; 2000; 899():121-35. PubMed ID: 10863534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen.
    Nohl H; Gille L; Schönheit K; Liu Y
    Free Radic Biol Med; 1996; 20(2):207-13. PubMed ID: 8746441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new ubiquinone metabolite and its activity at the mitochondrial bc1 complex.
    Gille L; Stamberg W; Jäger W; Reznicek G; Netscher T; Rosenau T
    Chem Res Toxicol; 2007 Apr; 20(4):591-9. PubMed ID: 17381131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.