BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 10608837)

  • 21. Unpairing and gating: sequence-independent substrate recognition by FEN superfamily nucleases.
    Grasby JA; Finger LD; Tsutakawa SE; Atack JM; Tainer JA
    Trends Biochem Sci; 2012 Feb; 37(2):74-84. PubMed ID: 22118811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wheat (Triticum vulgare) chloroplast nuclease ChSI exhibits 5' flap structure-specific endonuclease activity.
    Przykorska A; Solecka K; Olszak K; Keith G; Nawrot B; Kuligowska E
    Biochemistry; 2004 Sep; 43(35):11283-94. PubMed ID: 15366938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structures of human exonuclease 1 DNA complexes suggest a unified mechanism for nuclease family.
    Orans J; McSweeney EA; Iyer RR; Hast MA; Hellinga HW; Modrich P; Beese LS
    Cell; 2011 Apr; 145(2):212-23. PubMed ID: 21496642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Processing of an HIV replication intermediate by the human DNA replication enzyme FEN1.
    Rumbaugh JA; Fuentes GM; Bambara RA
    J Biol Chem; 1998 Oct; 273(44):28740-5. PubMed ID: 9786870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily.
    Tsutakawa SE; Classen S; Chapados BR; Arvai AS; Finger LD; Guenther G; Tomlinson CG; Thompson P; Sarker AH; Shen B; Cooper PK; Grasby JA; Tainer JA
    Cell; 2011 Apr; 145(2):198-211. PubMed ID: 21496641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of flap modifications on human FEN1 cleavage.
    Bornarth CJ; Ranalli TA; Henricksen LA; Wahl AF; Bambara RA
    Biochemistry; 1999 Oct; 38(40):13347-54. PubMed ID: 10529210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA structural elements required for FEN-1 binding.
    Harrington JJ; Lieber MR
    J Biol Chem; 1995 Mar; 270(9):4503-8. PubMed ID: 7876218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity.
    Hosfield DJ; Mol CD; Shen B; Tainer JA
    Cell; 1998 Oct; 95(1):135-46. PubMed ID: 9778254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A conserved tyrosine residue aids ternary complex formation, but not catalysis, in phage T5 flap endonuclease.
    Patel D; Tock MR; Frary E; Feng M; Pickering TJ; Grasby JA; Sayers JR
    J Mol Biol; 2002 Jul; 320(5):1025-35. PubMed ID: 12126622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Processing of DNA replication and repair intermediates by the concerted action of RecQ helicases and Rad2 structure-specific nucleases.
    Sharma S; Sommers JA; Brosh RM
    Protein Pept Lett; 2008; 15(1):89-102. PubMed ID: 18221018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and characterization of the DNA polymerase alpha associated exonuclease: the RTH1 gene product.
    Zhu FX; Biswas EE; Biswas SB
    Biochemistry; 1997 May; 36(20):5947-54. PubMed ID: 9166764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Saccharomyces cerevisiae exonuclease-1 plays a role in UV resistance that is distinct from nucleotide excision repair.
    Qiu J; Guan MX; Bailis AM; Shen B
    Nucleic Acids Res; 1998 Jul; 26(13):3077-83. PubMed ID: 9628902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA.
    Redrejo-Rodríguez M; Vigouroux A; Mursalimov A; Grin I; Alili D; Koshenov Z; Akishev Z; Maksimenko A; Bissenbaev AK; Matkarimov BT; Saparbaev M; Ishchenko AA; Moréra S
    Biochimie; 2016; 128-129():20-33. PubMed ID: 27343627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The flexible loop of human FEN1 endonuclease is required for flap cleavage during DNA replication and repair.
    Storici F; Henneke G; Ferrari E; Gordenin DA; Hübscher U; Resnick MA
    EMBO J; 2002 Nov; 21(21):5930-42. PubMed ID: 12411510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determinants in nuclease specificity of Ape1 and Ape2, human homologues of Escherichia coli exonuclease III.
    Hadi MZ; Ginalski K; Nguyen LH; Wilson DM
    J Mol Biol; 2002 Feb; 316(3):853-66. PubMed ID: 11866537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arginine residues 47 and 70 of human flap endonuclease-1 are involved in DNA substrate interactions and cleavage site determination.
    Qiu J; Bimston DN; Partikian A; Shen B
    J Biol Chem; 2002 Jul; 277(27):24659-66. PubMed ID: 11986308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flap endonuclease activity of gene 6 exonuclease of bacteriophage T7.
    Mitsunobu H; Zhu B; Lee SJ; Tabor S; Richardson CC
    J Biol Chem; 2014 Feb; 289(9):5860-75. PubMed ID: 24394415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion.
    Liu Y; Bambara RA
    J Biol Chem; 2003 Apr; 278(16):13728-39. PubMed ID: 12554738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissecting endonuclease and exonuclease activities in endonuclease V from Thermotoga maritima.
    Mi R; Abole AK; Cao W
    Nucleic Acids Res; 2011 Jan; 39(2):536-44. PubMed ID: 20852258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the catalytic core of Rad2: insights into the mechanism of substrate binding.
    Miętus M; Nowak E; Jaciuk M; Kustosz P; Studnicka J; Nowotny M
    Nucleic Acids Res; 2014; 42(16):10762-75. PubMed ID: 25120270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.