BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 10608901)

  • 1. Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10.
    Tu Y; Popov S; Slaughter C; Ross EM
    J Biol Chem; 1999 Dec; 274(53):38260-7. PubMed ID: 10608901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palmitoylation regulates regulator of G-protein signaling (RGS) 16 function. II. Palmitoylation of a cysteine residue in the RGS box is critical for RGS16 GTPase accelerating activity and regulation of Gi-coupled signalling.
    Osterhout JL; Waheed AA; Hiol A; Ward RJ; Davey PC; Nini L; Wang J; Milligan G; Jones TL; Druey KM
    J Biol Chem; 2003 May; 278(21):19309-16. PubMed ID: 12642592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of RGS3 and RGS10 palmitoylation by GnRH.
    Castro-Fernández C; Janovick JA; Brothers SP; Fisher RA; Ji TH; Conn PM
    Endocrinology; 2002 Apr; 143(4):1310-7. PubMed ID: 11897687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of palmitoylation in RGS protein function.
    Jones TL
    Methods Enzymol; 2004; 389():33-55. PubMed ID: 15313558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palmitoylation regulates regulators of G-protein signaling (RGS) 16 function. I. Mutation of amino-terminal cysteine residues on RGS16 prevents its targeting to lipid rafts and palmitoylation of an internal cysteine residue.
    Hiol A; Davey PC; Osterhout JL; Waheed AA; Fischer ER; Chen CK; Milligan G; Druey KM; Jones TL
    J Biol Chem; 2003 May; 278(21):19301-8. PubMed ID: 12642593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of brain Gz GAP and other RGS proteins by palmitoylation of G protein alpha subunits.
    Tu Y; Wang J; Ross EM
    Science; 1997 Nov; 278(5340):1132-5. PubMed ID: 9353196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palmitoylation and its effect on the GTPase-activating activity and conformation of RGS2.
    Ni J; Qu L; Yang H; Wang M; Huang Y
    Int J Biochem Cell Biol; 2006; 38(12):2209-18. PubMed ID: 16945566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concerted stimulation and deactivation of pertussis toxin-sensitive G proteins by chimeric G protein-coupled receptor-regulator of G protein signaling 4 fusion proteins: analysis of the contribution of palmitoylated cysteine residues to the GAP activity of RGS4.
    Bahia DS; Sartania N; Ward RJ; Cavalli A; Jones TL; Druey KM; Milligan G
    J Neurochem; 2003 Jun; 85(5):1289-98. PubMed ID: 12753087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino-terminal cysteine residues differentially influence RGS4 protein plasma membrane targeting, intracellular trafficking, and function.
    Bastin G; Singh K; Dissanayake K; Mighiu AS; Nurmohamed A; Heximer SP
    J Biol Chem; 2012 Aug; 287(34):28966-74. PubMed ID: 22753418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric inhibition of the regulator of G protein signaling-Galpha protein-protein interaction by CCG-4986.
    Roman DL; Blazer LL; Monroy CA; Neubig RR
    Mol Pharmacol; 2010 Sep; 78(3):360-5. PubMed ID: 20530129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of regulator of G protein signaling (RGS) proteins to phospholipid bilayers. Contribution of location and/or orientation to Gtpase-activating protein activity.
    Tu Y; Woodson J; Ross EM
    J Biol Chem; 2001 Jun; 276(23):20160-6. PubMed ID: 11274219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of chimeric RGS proteins in yeast for the functional evaluation of protein domains and their potential use in drug target validation.
    Ajit SK; Young KH
    Cell Signal; 2005 Jul; 17(7):817-25. PubMed ID: 15763424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric regulation of GAP activity by phospholipids in regulators of G-protein signaling.
    Tu Y; Wilkie TM
    Methods Enzymol; 2004; 389():89-105. PubMed ID: 15313561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RGS7 is palmitoylated and exists as biochemically distinct forms.
    Rose JJ; Taylor JB; Shi J; Cockett MI; Jones PG; Hepler JR
    J Neurochem; 2000 Nov; 75(5):2103-12. PubMed ID: 11032900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RGS3 and RGS4 differentially associate with G protein-coupled receptor-Kir3 channel signaling complexes revealing two modes of RGS modulation. Precoupling and collision coupling.
    Jaén C; Doupnik CA
    J Biol Chem; 2006 Nov; 281(45):34549-60. PubMed ID: 16973624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and comparison of RGS2 and RGS4 as GTPase-activating proteins for m2 muscarinic receptor-stimulated G(i).
    Cladman W; Chidiac P
    Mol Pharmacol; 2002 Sep; 62(3):654-9. PubMed ID: 12181442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mutation in the N-terminal domain of RGS4 disrupts PA-conferred inhibitory effect on GAP activity.
    Ou-Yang YS; Tu Y; Yang F
    Biosci Rep; 2003 Aug; 23(4):213-24. PubMed ID: 14748540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gbetagamma inhibits Galpha GTPase-activating proteins by inhibition of Galpha-GTP binding during stimulation by receptor.
    Tang W; Tu Y; Nayak SK; Woodson J; Jehl M; Ross EM
    J Biol Chem; 2006 Feb; 281(8):4746-53. PubMed ID: 16407201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulators of G-protein signaling (RGS) 4, insertion into model membranes and inhibition of activity by phosphatidic acid.
    Ouyang YS; Tu Y; Barker SA; Yang F
    J Biol Chem; 2003 Mar; 278(13):11115-22. PubMed ID: 12538649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino-terminal cysteine residues of RGS16 are required for palmitoylation and modulation of Gi- and Gq-mediated signaling.
    Druey KM; Ugur O; Caron JM; Chen CK; Backlund PS; Jones TL
    J Biol Chem; 1999 Jun; 274(26):18836-42. PubMed ID: 10373502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.