These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 10609630)
1. Characteristics of visual feedback in postural control during standing. Fukuoka Y; Tanaka K; Ishida A; Minamitani H IEEE Trans Rehabil Eng; 1999 Dec; 7(4):427-34. PubMed ID: 10609630 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of somatosensory feedback in postural control during standing. Fukuoka Y; Nagata T; Ishida A; Minamitani H IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):145-53. PubMed ID: 11474967 [TBL] [Abstract][Full Text] [Related]
3. Human postural responses to motion of real and virtual visual environments under different support base conditions. Mergner T; Schweigart G; Maurer C; Blümle A Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the posture control system under fixed and sway-referenced support conditions. Ishida A; Imai S; Fukuoka Y IEEE Trans Biomed Eng; 1997 May; 44(5):331-6. PubMed ID: 9125817 [TBL] [Abstract][Full Text] [Related]
5. Stable human standing with lower-limb muscle afferents providing the only sensory input. Fitzpatrick R; Rogers DK; McCloskey DI J Physiol; 1994 Oct; 480 ( Pt 2)(Pt 2):395-403. PubMed ID: 7869254 [TBL] [Abstract][Full Text] [Related]
6. EquiTest modification with shank and hip angle measurements: differences with age among normal subjects. Speers RA; Shepard NT; Kuo AD J Vestib Res; 1999; 9(6):435-44. PubMed ID: 10639028 [TBL] [Abstract][Full Text] [Related]
7. Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances. Fitzpatrick R; Burke D; Gandevia SC J Neurophysiol; 1996 Dec; 76(6):3994-4008. PubMed ID: 8985895 [TBL] [Abstract][Full Text] [Related]
8. Visual and vestibular contributions to pitch sway stabilization in the ankle muscles of normals and patients with bilateral peripheral vestibular deficits. Allum JH; Pfaltz CR Exp Brain Res; 1985; 58(1):82-94. PubMed ID: 3872806 [TBL] [Abstract][Full Text] [Related]
9. Free Energy Principle in Human Postural Control System: Skin Stretch Feedback Reduces the Entropy. Hur P; Pan YT; DeBuys C Sci Rep; 2019 Nov; 9(1):16870. PubMed ID: 31727928 [TBL] [Abstract][Full Text] [Related]
10. The influence of dynamic visual cues for postural control in children aged 7-12 years. Sparto PJ; Redfern MS; Jasko JG; Casselbrant ML; Mandel EM; Furman JM Exp Brain Res; 2006 Jan; 168(4):505-16. PubMed ID: 16151780 [TBL] [Abstract][Full Text] [Related]
11. Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues. Assländer L; Peterka RJ J Neurophysiol; 2016 Aug; 116(2):272-85. PubMed ID: 27075544 [TBL] [Abstract][Full Text] [Related]
12. Manually controlled human balancing using visual, vestibular and proprioceptive senses involves a common, low frequency neural process. Lakie M; Loram ID J Physiol; 2006 Nov; 577(Pt 1):403-16. PubMed ID: 16959857 [TBL] [Abstract][Full Text] [Related]
13. Visual contribution to human standing balance during support surface tilts. Assländer L; Hettich G; Mergner T Hum Mov Sci; 2015 Jun; 41():147-64. PubMed ID: 25816794 [TBL] [Abstract][Full Text] [Related]
14. Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. Fitzpatrick R; McCloskey DI J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):173-86. PubMed ID: 7965833 [TBL] [Abstract][Full Text] [Related]
15. The effects of visual input on open-loop and closed-loop postural control mechanisms. Collins JJ; De Luca CJ Exp Brain Res; 1995; 103(1):151-63. PubMed ID: 7615030 [TBL] [Abstract][Full Text] [Related]
16. Influence of expectation on postural disturbance evoked by proprioceptive stimulation. Caudron S; Boy F; Forestier N; Guerraz M Exp Brain Res; 2008 Jan; 184(1):53-9. PubMed ID: 17703285 [TBL] [Abstract][Full Text] [Related]
17. Effect of age and sex on maturation of sensory systems and balance control. Steindl R; Kunz K; Schrott-Fischer A; Scholtz AW Dev Med Child Neurol; 2006 Jun; 48(6):477-82. PubMed ID: 16700940 [TBL] [Abstract][Full Text] [Related]
18. Vestibular-neck interaction and transformation of sensory coordinates. Mergner T; Huber W; Becker W J Vestib Res; 1997; 7(4):347-67. PubMed ID: 9218246 [TBL] [Abstract][Full Text] [Related]
19. A conceptual model of the visual control of posture. Bronstein AM Prog Brain Res; 2019; 248():285-302. PubMed ID: 31239139 [TBL] [Abstract][Full Text] [Related]
20. Postural sway characteristics of the elderly under normal and altered visual and support surface conditions. Teasdale N; Stelmach GE; Breunig A J Gerontol; 1991 Nov; 46(6):B238-44. PubMed ID: 1940075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]