These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 10609632)

  • 1. The NavChair Assistive Wheelchair Navigation System.
    Levine SP; Bell DA; Jaros LA; Simpson RC; Koren Y; Borenstein J
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):443-51. PubMed ID: 10609632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic adaptation in the NavChair Assistive Wheelchair Navigation System.
    Simpson RC; Levine SP
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):452-63. PubMed ID: 10609633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Hephaestus Smart Wheelchair System.
    Simpson RC; Poirot D; Baxter F
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):118-22. PubMed ID: 12236449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A navigation system for increasing the autonomy and the security of powered wheelchairs.
    Fioretti S; Leo T; Longhi S
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):490-8. PubMed ID: 11204040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of semiautonomous navigation assistance system for power wheelchairs with blindfolded nondisabled individuals.
    Sharma V; Simpson R; Lopresti E; Schmeler M
    J Rehabil Res Dev; 2010; 47(9):877-90. PubMed ID: 21174252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The smart wheelchair component system.
    Simpson R; Lopresti E; Hayashi S; Nourbakhsh I; Miller D
    J Rehabil Res Dev; 2004 May; 41(3B):429-42. PubMed ID: 15543461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial results in the development of a guidance system for a powered wheelchair.
    Yoder JD; Baumgartner ET; Skaar SB
    IEEE Trans Rehabil Eng; 1996 Sep; 4(3):143-51. PubMed ID: 8800217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
    Lopes AC; Nunes U; Vaz L; Vaz L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():471-4. PubMed ID: 21095885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control architecture for human-robot integration: application to a robotic wheelchair.
    Galindo C; Gonzalez J; Fernández-Madrigal JA
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1053-67. PubMed ID: 17036812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Self-Reliance Factors to Decide How to Share Control Between Human Powered Wheelchair Drivers and Ultrasonic Sensors.
    Sanders DA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1221-1229. PubMed ID: 28113771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using machine learning to blend human and robot controls for assisted wheelchair navigation.
    Goil A; Derry M; Argall BD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650454. PubMed ID: 24187271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic Tethering to Enable Side-by-Side Following for Powered Wheelchairs.
    Pingali TR; Lemaire ED; Baddour N
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30598029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robotic vehicle for disabled children. Providing assisted mobility with the PALMA project.
    Ceres R; Pons JL; Calderón L; Jiménez AR; Azevedo L
    IEEE Eng Med Biol Mag; 2005; 24(6):55-63. PubMed ID: 16382806
    [No Abstract]   [Full Text] [Related]  

  • 15. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.
    Zhang R; Li Y; Yan Y; Zhang H; Wu S; Yu T; Gu Z
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):128-39. PubMed ID: 26054072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart wheelchairs: A literature review.
    Simpson RC
    J Rehabil Res Dev; 2005; 42(4):423-36. PubMed ID: 16320139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the construction of a skill-based wheelchair navigation profile.
    Urdiales C; Pérez EJ; Peinado G; Fdez-Carmona M; Peula JM; Annicchiarico R; Sandoval F; Caltagirone C
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):917-27. PubMed ID: 23475373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.