These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 10609632)

  • 21. Performance testing of collision-avoidance system for power wheelchairs.
    Lopresti EF; Sharma V; Simpson RC; Mostowy LC
    J Rehabil Res Dev; 2011; 48(5):529-44. PubMed ID: 21674403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How many people would benefit from a smart wheelchair?
    Simpson RC; LoPresti EF; Cooper RA
    J Rehabil Res Dev; 2008; 45(1):53-71. PubMed ID: 18566926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy.
    Gakopoulos S; Nica IG; Bekteshi S; Aerts JM; Monbaliu E; Hallez H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wheelchair Navigation System for Disabled and Elderly People.
    Kim EY
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. System for assisted mobility using eye movements based on electrooculography.
    Barea R; Boquete L; Mazo M; López E
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):209-18. PubMed ID: 12611358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust human machine interface based on head movements applied to assistive robotics.
    Perez E; López N; Orosco E; Soria C; Mut V; Freire-Bastos T
    ScientificWorldJournal; 2013; 2013():589636. PubMed ID: 24453877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The future of the provision process for mobility assistive technology: a survey of providers.
    Dicianno BE; Joseph J; Eckstein S; Zigler CK; Quinby EJ; Schmeler MR; Schein RM; Pearlman J; Cooper RA
    Disabil Rehabil Assist Technol; 2019 May; 14(4):338-345. PubMed ID: 29557196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assisting versus repelling force-feedback for learning of a line following task in a wheelchair.
    Chen X; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):959-68. PubMed ID: 23475377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shared control strategies for human-machine interface in an intelligent wheelchair.
    Nguyen AV; Nguyen LB; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3638-41. PubMed ID: 24110518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A collaborative wheelchair system.
    Zeng Q; Teo CL; Rebsamen B; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):161-70. PubMed ID: 18403284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autonomous assistance navigation for robotic wheelchairs in confined spaces.
    Cheein FA; Carelli R; De la Cruz C; Muller S; Bastos Filho TF
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():503-6. PubMed ID: 21095654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward gesture controlled wheelchair: a proof of concept study.
    Kawarazaki N; Stefanov D; Diaz AI
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650348. PubMed ID: 24187167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. User evaluation of a collaborative wheelchair system.
    Zeng Q; Burdet E; Teo CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1956-60. PubMed ID: 19163074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of joystick control during the performance of powered wheelchair driving tasks.
    Sorrento GU; Archambault PS; Routhier F; Dessureault D; Boissy P
    J Neuroeng Rehabil; 2011 May; 8():31. PubMed ID: 21609435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mobile robotics and mobility assistance for people with motor impairments: rational justification for the VAHM Project.
    Bourhis G; Pino P
    IEEE Trans Rehabil Eng; 1996 Mar; 4(1):7-12. PubMed ID: 8798067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a Bayesian recursive algorithm to find free-spaces for an intelligent wheelchair.
    Nguyen AV; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7250-3. PubMed ID: 22256012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Next generation autonomous wheelchair control.
    Benson J; Barrett S
    Biomed Sci Instrum; 2005; 41():283-8. PubMed ID: 15850119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of an intelligent wheelchair system for older adults with cognitive impairments.
    How TV; Wang RH; Mihailidis A
    J Neuroeng Rehabil; 2013 Aug; 10():90. PubMed ID: 23924489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geospatial assistive technologies for wheelchair users: a scoping review of usability measures and criteria for mobile user interfaces and their potential applicability.
    Prémont MÉ; Vincent C; Mostafavi MA; Routhier F
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):119-131. PubMed ID: 30663444
    [No Abstract]   [Full Text] [Related]  

  • 40. Towards an intelligent wheelchair system for users with cerebral palsy.
    Montesano L; Díaz M; Bhaskar S; Minguez J
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):193-202. PubMed ID: 20071276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.