These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 10610759)

  • 1. SOS mutagenesis results from up-regulation of translesion synthesis.
    Becherel OJ; Fuchs RP
    J Mol Biol; 1999 Nov; 294(2):299-306. PubMed ID: 10610759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot.
    Fuchs RP; Fujii S
    DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli.
    Bichara M; Meier M; Wagner J; Cordonnier A; Lambert IB
    Mutat Res; 2011; 727(3):104-22. PubMed ID: 21558018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SOS mutator activity: unequal mutagenesis on leading and lagging strands.
    Maliszewska-Tkaczyk M; Jonczyk P; Bialoskorska M; Schaaper RM; Fijalkowska IJ
    Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12678-83. PubMed ID: 11050167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis.
    Livneh Z; Cohen-Fix O; Skaliter R; Elizur T
    Crit Rev Biochem Mol Biol; 1993; 28(6):465-513. PubMed ID: 8299359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication of M13 single-stranded viral DNA bearing single site-specific adducts by escherichia coli cell extracts: differential efficiency of translesion DNA synthesis for SOS-dependent and SOS-independent lesions.
    Wang G; Rahman MS; Humayun MZ
    Biochemistry; 1997 Aug; 36(31):9486-92. PubMed ID: 9235993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular strategies for accommodating replication-hindering adducts in DNA: control by the SOS response in Escherichia coli.
    Koffel-Schwartz N; Coin F; Veaute X; Fuchs RP
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7805-10. PubMed ID: 8755557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation spectra of M13 vectors containing site-specific Cis-Syn, Trans-Syn-I, (6-4), and Dewar pyrimidone photoproducts of thymidylyl-(3'-->5')-thymidine in Escherichia coli under SOS conditions.
    Smith CA; Wang M; Jiang N; Che L; Zhao X; Taylor JS
    Biochemistry; 1996 Apr; 35(13):4146-54. PubMed ID: 8672450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolerance of lesions in E. coli: Chronological competition between Translesion Synthesis and Damage Avoidance.
    Fuchs RP
    DNA Repair (Amst); 2016 Aug; 44():51-58. PubMed ID: 27321147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Error-prone DNA repair and translesion synthesis: focus on the replication fork.
    Bridges BA
    DNA Repair (Amst); 2005 May; 4(5):618-9, 634. PubMed ID: 15811633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA polymerases eta and kappa are responsible for error-free translesion DNA synthesis activity over a cis-syn thymine dimer in Xenopus laevis oocyte extracts.
    Yagi Y; Ogawara D; Iwai S; Hanaoka F; Akiyama M; Maki H
    DNA Repair (Amst); 2005 Nov; 4(11):1252-69. PubMed ID: 16055392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenic DNA repair in Escherichia coli. XXI. A stable SOS-inducing signal persisting after excision repair of ultraviolet damage.
    Bridges BA; Brown GM
    Mutat Res; 1992 Nov; 270(2):135-44. PubMed ID: 1383730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis.
    Tang M; Pham P; Shen X; Taylor JS; O'Donnell M; Woodgate R; Goodman MF
    Nature; 2000 Apr; 404(6781):1014-8. PubMed ID: 10801133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence context modulation of translesion synthesis at a single N-2-acetylaminofluorene adduct located within a mutation hot spot.
    Burnouf DY; Miturski R; Fuchs RP
    Chem Res Toxicol; 1999 Feb; 12(2):144-50. PubMed ID: 10027791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pol III proofreading activity prevents lesion bypass as evidenced by its molecular signature within E.coli cells.
    Pages V; Janel-Bintz R; Fuchs RP
    J Mol Biol; 2005 Sep; 352(3):501-9. PubMed ID: 16111701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical model of the SOS response regulation of an excision repair deficient mutant of Escherichia coli after ultraviolet light irradiation.
    Aksenov SV; Krasavin EA; Litvin AA
    J Theor Biol; 1997 May; 186(2):251-60. PubMed ID: 9196659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-dependent modulation of frameshift mutagenesis at NarI-derived mutation hot spots.
    Broschard TH; Koffel-Schwartz N; Fuchs RP
    J Mol Biol; 1999 Apr; 288(1):191-9. PubMed ID: 10329136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error-prone DNA repair and translesion DNA synthesis. II: The inducible SOS hypothesis.
    Bridges BA
    DNA Repair (Amst); 2005 Jun; 4(6):725-6, 739. PubMed ID: 15907776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo.
    Pagès V; Fuchs RP
    Science; 2003 May; 300(5623):1300-3. PubMed ID: 12764199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenic effects of 2-deoxyribonolactone in Escherichia coli. An abasic lesion that disobeys the A-rule.
    Kroeger KM; Jiang YL; Kow YW; Goodman MF; Greenberg MM
    Biochemistry; 2004 Jun; 43(21):6723-33. PubMed ID: 15157106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.