BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 10610786)

  • 1. Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping.
    Tsodikov OV; Saecker RM; Melcher SE; Levandoski MM; Frank DE; Capp MW; Record MT
    J Mol Biol; 1999 Dec; 294(3):639-55. PubMed ID: 10610786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic stoichiometries of participation of water, cations and anions in specific and non-specific binding of lac repressor to DNA. Possible thermodynamic origins of the "glutamate effect" on protein-DNA interactions.
    Ha JH; Capp MW; Hohenwalter MD; Baskerville M; Record MT
    J Mol Biol; 1992 Nov; 228(1):252-64. PubMed ID: 1447786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of a Lac repressor mediated "looped complex".
    Brenowitz M; Pickar A; Jamison E
    Biochemistry; 1991 Jun; 30(24):5986-98. PubMed ID: 2043636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of lac repressor headpiece with its operator: an NMR view.
    Boelens R; Lamerichs RM; Rullmann JA; van Boom JH; Kaptein R
    Protein Seq Data Anal; 1988; 1(6):487-98. PubMed ID: 3064080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. lac repressor forms stable loops in vitro with supercoiled wild-type lac DNA containing all three natural lac operators.
    Eismann ER; Müller-Hill B
    J Mol Biol; 1990 Jun; 213(4):763-75. PubMed ID: 2359123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An NMR-based molecular dynamics simulation of the interaction of the lac repressor headpiece and its operator in aqueous solution.
    de Vlieg J; Berendsen HJ; van Gunsteren WF
    Proteins; 1989; 6(2):104-27. PubMed ID: 2622902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA looping in cellular repression of transcription of the galactose operon.
    Mandal N; Su W; Haber R; Adhya S; Echols H
    Genes Dev; 1990 Mar; 4(3):410-8. PubMed ID: 2186968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexibility of the DNA-binding domains of trp repressor.
    Lawson CL; Zhang RG; Schevitz RW; Otwinowski Z; Joachimiak A; Sigler PB
    Proteins; 1988; 3(1):18-31. PubMed ID: 3375234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the gel electrophoresis of looped protein-DNA complexes by computer simulation.
    Cann JR
    J Mol Biol; 1990 Dec; 216(4):1067-75. PubMed ID: 2266556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak operator binding enhances simulated Lac repressor-mediated DNA looping.
    Colasanti AV; Grosner MA; Perez PJ; Clauvelin N; Lu XJ; Olson WK
    Biopolymers; 2013 Dec; 99(12):1070-81. PubMed ID: 23818216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of ion concentration effects of the kinetics of protein-nucleic acid interactions. Application to lac repressor-operator interactions.
    Lohman TM; DeHaseth PL; Record MT
    Biophys Chem; 1978 Sep; 8(4):281-94. PubMed ID: 728535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Lac repressor finds lac operator in vitro.
    Fickert R; Müller-Hill B
    J Mol Biol; 1992 Jul; 226(1):59-68. PubMed ID: 1535665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of negative supercoiling and of the proximity of left-handed Z-DNA on the Escherichia coli lactose repressor-operator interaction.
    Hsieh WT; Wells RD
    J Biol Chem; 1987 Oct; 262(30):14576-82. PubMed ID: 3312192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercoiling facilitates lac operator-repressor-pseudooperator interactions.
    Whitson PA; Hsieh WT; Wells RD; Matthews KS
    J Biol Chem; 1987 Apr; 262(11):4943-6. PubMed ID: 3549713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay of protein and DNA structure revealed in simulations of the lac operon.
    Czapla L; Grosner MA; Swigon D; Olson WK
    PLoS One; 2013; 8(2):e56548. PubMed ID: 23457581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific binding of lac repressor to linear versus circular polyoperator molecules.
    Sasmor HM; Betz JL
    Biochemistry; 1990 Sep; 29(38):9023-8. PubMed ID: 2271575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping.
    Normanno D; Vanzi F; Pavone FS
    Nucleic Acids Res; 2008 May; 36(8):2505-13. PubMed ID: 18310101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetric lac operator derivatives: effects of half-operator sequence and spacing on repressor affinity.
    Sasmor HM; Betz JL
    Gene; 1990 Apr; 89(1):1-6. PubMed ID: 2197175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 31P NMR spectra of oligodeoxyribonucleotide duplex lac operator-repressor headpiece complexes: importance of phosphate ester backbone flexibility in protein-DNA recognition.
    Karslake C; Botuyan MV; Gorenstein DG
    Biochemistry; 1992 Feb; 31(6):1849-58. PubMed ID: 1737038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H NMR study of a complex between the lac repressor headpiece and a 22 base pair symmetric lac operator.
    Lamerichs RM; Boelens R; van der Marel GA; van Boom JH; Kaptein R; Buck F; Fera B; Rüterjans H
    Biochemistry; 1989 Apr; 28(7):2985-91. PubMed ID: 2742823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.