BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 10610796)

  • 1. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium.
    Wieprecht T; Apostolov O; Beyermann M; Seelig J
    J Mol Biol; 1999 Dec; 294(3):785-94. PubMed ID: 10610796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-helix to random-coil transitions of two-chain coiled coils: the use of physical models in treating thermal denaturation equilibria of isolated subsequences of alpha alpha-tropomyosin.
    Holtzer A; Holtzer ME
    Biopolymers; 1990; 30(13-14):1231-41. PubMed ID: 2085659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular thermodynamic approach to predict the secondary structure of homopolypeptides in aqueous systems.
    Chen CC; Zhu Y; King JA; Evans LB
    Biopolymers; 1992 Oct; 32(10):1375-92. PubMed ID: 1420965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic parameters of helix-random coil transitions in polypeptide chains. IV. Random copolymers of L-alanine with L-glutamic acid.
    Bychkova VE; Ptitsyn OB
    Mol Biol (Mosk); 1976; 10(4):756-61. PubMed ID: 15214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enthalpy of the alanine peptide helix measured by isothermal titration calorimetry using metal-binding to induce helix formation.
    Lopez MM; Chin DH; Baldwin RL; Makhatadze GI
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1298-302. PubMed ID: 11818561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptides in membranes: helicity and hydrophobicity.
    Deber CM; Li SC
    Biopolymers; 1995; 37(5):295-318. PubMed ID: 7632880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of alpha-helix stability in peptides having a negatively or positively charged residue block attached either to the N- or C-terminus of an alpha-helix: the electrostatic contribution and anisotropic stability of the alpha-helix.
    Takahashi S; Kim EH; Hibino T; Ooi T
    Biopolymers; 1989 May; 28(5):995-1009. PubMed ID: 2742989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water.
    Scholtz JM; Qian H; York EJ; Stewart JM; Baldwin RL
    Biopolymers; 1991 Nov; 31(13):1463-70. PubMed ID: 1814498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical reasons for secondary structure stability: alpha-helices in short peptides.
    Finkelstein AV; Badretdinov AY; Ptitsyn OB
    Proteins; 1991; 10(4):287-99. PubMed ID: 1946339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal unfolding of helices of a C-peptide analogue of ribonuclease A in sodium dodecyl sulfate solution.
    Wu CS; Yang JT
    Biopolymers; 1990; 30(3-4):381-8. PubMed ID: 2279070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alpha-helix to random coil transitions: determination of peptide concentration from the CD at the isodichroic point.
    Holtzer ME; Holtzer A
    Biopolymers; 1992 Dec; 32(12):1675-7. PubMed ID: 1472650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics and mechanism of alpha helix initiation in alanine and valine peptides.
    Tobias DJ; Brooks CL
    Biochemistry; 1991 Jun; 30(24):6059-70. PubMed ID: 2043644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The helix-coil transition in polypeptides: a microscopic approach. II.
    Hairyan SA; Mamasakhlisov ES; Morozov VF
    Biopolymers; 1995 Jan; 35(1):75-84. PubMed ID: 7696557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium structure and folding of a helix-forming peptide: circular dichroism measurements and replica-exchange molecular dynamics simulations.
    Jas GS; Kuczera K
    Biophys J; 2004 Dec; 87(6):3786-98. PubMed ID: 15339816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urea unfolding of peptide helices as a model for interpreting protein unfolding.
    Scholtz JM; Barrick D; York EJ; Stewart JM; Baldwin RL
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):185-9. PubMed ID: 7816813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution properties of synthetic polypeptides. XII. Enthalpy changes accompanying helix-coil transition of polypeptide.
    Teramoto A; Norisuye T
    Biopolymers; 1972; 11(8):1693-700. PubMed ID: 5056088
    [No Abstract]   [Full Text] [Related]  

  • 18. Calorimetric measurement of enthalpy change in the isothermal helix--coil transition of poly-L-lysine in aqueous solution.
    Chou PY; Scheraga HA
    Biopolymers; 1971; 10(4):657-80. PubMed ID: 5552138
    [No Abstract]   [Full Text] [Related]  

  • 19. Calorimetric measurement of enthalpy change in the isothermal helix-coil transition of poly(L-ornithine) in aqueous solution.
    Fu YC; Wart HV; Scheraga HA
    Biopolymers; 1976 Sep; 15(9):1795-1813. PubMed ID: 9169
    [No Abstract]   [Full Text] [Related]  

  • 20. Calorimetric determination of the enthalpy change for the alpha-helix to coil transition of an alanine peptide in water.
    Scholtz JM; Marqusee S; Baldwin RL; York EJ; Stewart JM; Santoro M; Bolen DW
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2854-8. PubMed ID: 2011594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.