BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 10611228)

  • 1. A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation.
    Henis-Korenblit S; Strumpf NL; Goldstaub D; Kimchi A
    Mol Cell Biol; 2000 Jan; 20(2):496-506. PubMed ID: 10611228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eukaryotic translation initiation factor 4G is targeted for proteolytic cleavage by caspase 3 during inhibition of translation in apoptotic cells.
    Marissen WE; Lloyd RE
    Mol Cell Biol; 1998 Dec; 18(12):7565-74. PubMed ID: 9819442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Triticum Mosaic Virus 5' Leader Binds to Both eIF4G and eIFiso4G for Translation.
    Roberts R; Mayberry LK; Browning KS; Rakotondrafara AM
    PLoS One; 2017; 12(1):e0169602. PubMed ID: 28046134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eukaryotic initiation factor 4GII (eIF4GII), but not eIF4GI, cleavage correlates with inhibition of host cell protein synthesis after human rhinovirus infection.
    Svitkin YV; Gradi A; Imataka H; Morino S; Sonenberg N
    J Virol; 1999 Apr; 73(4):3467-72. PubMed ID: 10074204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the RNA Specialized Translation Initiation Element that Recruits eIF3 to the 5'-UTR of c-Jun.
    Walker MJ; Shortridge MD; Albin DD; Cominsky LY; Varani G
    J Mol Biol; 2020 Mar; 432(7):1841-1855. PubMed ID: 31953146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of cap-dependent translation via phosphorylation of eIF4G by protein kinase Pak2.
    Ling J; Morley SJ; Traugh JA
    EMBO J; 2005 Dec; 24(23):4094-105. PubMed ID: 16281055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells.
    Volta V; Pérez-Baos S; de la Parra C; Katsara O; Ernlund A; Dornbaum S; Schneider RJ
    Nat Commun; 2021 Nov; 12(1):6979. PubMed ID: 34848685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A researcher's guide to the galaxy of IRESs.
    Terenin IM; Smirnova VV; Andreev DE; Dmitriev SE; Shatsky IN
    Cell Mol Life Sci; 2017 Apr; 74(8):1431-1455. PubMed ID: 27853833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equol, an isoflavone metabolite, regulates cancer cell viability and protein synthesis initiation via c-Myc and eIF4G.
    de la Parra C; Borrero-Garcia LD; Cruz-Collazo A; Schneider RJ; Dharmawardhane S
    J Biol Chem; 2015 Mar; 290(10):6047-57. PubMed ID: 25593313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them.
    Leppek K; Das R; Barna M
    Nat Rev Mol Cell Biol; 2018 Mar; 19(3):158-174. PubMed ID: 29165424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular RNA, the Key for Translation.
    Prats AC; David F; Diallo LH; Roussel E; Tatin F; Garmy-Susini B; Lacazette E
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. La autoantigen enhances translation of BiP mRNA.
    Kim YK; Back SH; Rho J; Lee SH; Jang SK
    Nucleic Acids Res; 2001 Dec; 29(24):5009-16. PubMed ID: 11812831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene- and Species-Specific Hox mRNA Translation by Ribosome Expansion Segments.
    Leppek K; Fujii K; Quade N; Susanto TT; Boehringer D; Lenarčič T; Xue S; Genuth NR; Ban N; Barna M
    Mol Cell; 2020 Dec; 80(6):980-995.e13. PubMed ID: 33202249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IRES-mediated functional coupling of transcription and translation amplifies insulin receptor feedback.
    Marr MT; D'Alessio JA; Puig O; Tjian R
    Genes Dev; 2007 Jan; 21(2):175-83. PubMed ID: 17234883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer.
    Wolfe AL; Singh K; Zhong Y; Drewe P; Rajasekhar VK; Sanghvi VR; Mavrakis KJ; Jiang M; Roderick JE; Van der Meulen J; Schatz JH; Rodrigo CM; Zhao C; Rondou P; de Stanchina E; Teruya-Feldstein J; Kelliher MA; Speleman F; Porco JA; Pelletier J; Rätsch G; Wendel HG
    Nature; 2014 Sep; 513(7516):65-70. PubMed ID: 25079319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing molecular pathways for cancer cell fitness through a genetic screen of the cancer translatome.
    Kuzuoglu-Ozturk D; Hu Z; Rama M; Devericks E; Weiss J; Chiang GG; Worland ST; Brenner SE; Goodarzi H; Gilbert LA; Ruggero D
    Cell Rep; 2021 Jun; 35(13):109321. PubMed ID: 34192540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. eIF3d: A driver of noncanonical cap-dependent translation of specific mRNAs and a trigger of biological/pathological processes.
    Ma S; Liu JY; Zhang JT
    J Biol Chem; 2023 May; 299(5):104658. PubMed ID: 36997088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA.
    Weingarten-Gabbay S; Khan D; Liberman N; Yoffe Y; Bialik S; Das S; Oren M; Kimchi A
    Oncogene; 2014 Jan; 33(5):611-8. PubMed ID: 23318444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DAP5 promotes cap-independent translation of Bcl-2 and CDK1 to facilitate cell survival during mitosis.
    Marash L; Liberman N; Henis-Korenblit S; Sivan G; Reem E; Elroy-Stein O; Kimchi A
    Mol Cell; 2008 May; 30(4):447-59. PubMed ID: 18450493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The translation initiation factor DAP5 is a regulator of cell survival during mitosis.
    Liberman N; Marash L; Kimchi A
    Cell Cycle; 2009 Jan; 8(2):204-9. PubMed ID: 19158497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.