These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 10611393)
21. Thermodynamic and structural characterization of Asn and Ala residues in the disallowed II' region of the Ramachandran plot. Vega MC; Martínez JC; Serrano L Protein Sci; 2000 Dec; 9(12):2322-8. PubMed ID: 11206053 [TBL] [Abstract][Full Text] [Related]
22. An amino-domino model described by a cross-peptide-bond Ramachandran plot defines amino acid pairs as local structural units. Rosenberg AA; Yehishalom N; Marx A; Bronstein AM Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2301064120. PubMed ID: 37878722 [TBL] [Abstract][Full Text] [Related]
23. Disallowed Ramachandran conformations of amino acid residues in protein structures. Gunasekaran K; Ramakrishnan C; Balaram P J Mol Biol; 1996 Nov; 264(1):191-8. PubMed ID: 8950277 [TBL] [Abstract][Full Text] [Related]
24. Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase. Iwasaki W; Sekine S; Kuroishi C; Kuramitsu S; Shirouzu M; Yokoyama S J Mol Biol; 2006 Jul; 360(2):329-42. PubMed ID: 16753178 [TBL] [Abstract][Full Text] [Related]
25. Designing amino acids to determine the local conformations of peptides. Burgess AW Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2649-53. PubMed ID: 8146170 [TBL] [Abstract][Full Text] [Related]
26. Revisiting the Ramachandran plot: hard-sphere repulsion, electrostatics, and H-bonding in the alpha-helix. Ho BK; Thomas A; Brasseur R Protein Sci; 2003 Nov; 12(11):2508-22. PubMed ID: 14573863 [TBL] [Abstract][Full Text] [Related]
27. Side-chain conformations in 4-alpha-helical bundles. Fadouloglou VE; Glykos NM; Kokkinidis M Protein Eng; 2001 May; 14(5):321-8. PubMed ID: 11438754 [TBL] [Abstract][Full Text] [Related]
28. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid. Catak S; Monard G; Aviyente V; Ruiz-López MF J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962 [TBL] [Abstract][Full Text] [Related]
29. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity. Radkiewicz JL; Zipse H; Clarke S; Houk KN J Am Chem Soc; 2001 Apr; 123(15):3499-506. PubMed ID: 11472122 [TBL] [Abstract][Full Text] [Related]
30. Enantiospecific adsorption of amino acids on hydroxylated quartz (10 1 0). Han JW; Sholl DS Phys Chem Chem Phys; 2010 Jul; 12(28):8024-32. PubMed ID: 20526493 [TBL] [Abstract][Full Text] [Related]
31. Synthesis of peptides containing oxo amino acids and their crystallographic analysis. Kalita M; Archana A; Dimri A; Vasudev PG; Ramapanicker R J Pept Sci; 2019 Mar; 25(3):e3148. PubMed ID: 30697868 [TBL] [Abstract][Full Text] [Related]
32. Sparsely populated residue conformations in protein structures: revisiting "experimental" Ramachandran maps. Kalmankar NV; Ramakrishnan C; Balaram P Proteins; 2014 Jul; 82(7):1101-12. PubMed ID: 23934782 [TBL] [Abstract][Full Text] [Related]
33. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl- and aspartyl-containing peptides. Brennan TV; Clarke S Int J Pept Protein Res; 1995 Jun; 45(6):547-53. PubMed ID: 7558585 [TBL] [Abstract][Full Text] [Related]
34. Coulombic attractions between partially charged main-chain atoms stabilise the right-handed twist found in most beta-strands. Maccallum PH; Poet R; Milner-White EJ J Mol Biol; 1995 Apr; 248(2):374-84. PubMed ID: 7739047 [TBL] [Abstract][Full Text] [Related]
35. Computational study of protein secondary structure elements: Ramachandran plots revisited. Carrascoza F; Zaric S; Silaghi-Dumitrescu R J Mol Graph Model; 2014 May; 50():125-33. PubMed ID: 24793053 [TBL] [Abstract][Full Text] [Related]
36. Hemoglobin Yoshizuka (G10(108)beta asparagine--aspartic acid): a new variant with a reduced oxygen affinity from a Japanese family. Imamura T; Fujita S; Ohta Y; Hanada M; Yanase T J Clin Invest; 1969 Dec; 48(12):2341-8. PubMed ID: 5355345 [TBL] [Abstract][Full Text] [Related]
37. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Clarke S Int J Pept Protein Res; 1987 Dec; 30(6):808-21. PubMed ID: 3440704 [TBL] [Abstract][Full Text] [Related]
38. Crystallographic investigation of the role of aspartate 95 in the modulation of the redox potentials of Desulfovibrio vulgaris flavodoxin. McCarthy AA; Walsh MA; Verma CS; O'Connell DP; Reinhold M; Yalloway GN; D'Arcy D; Higgins TM; Voordouw G; Mayhew SG Biochemistry; 2002 Sep; 41(36):10950-62. PubMed ID: 12206666 [TBL] [Abstract][Full Text] [Related]
39. Independent highly sensitive characterization of asparagine deamidation and aspartic acid isomerization by sheathless CZE-ESI-MS/MS. Gahoual R; Beck A; François YN; Leize-Wagner E J Mass Spectrom; 2016 Feb; 51(2):150-8. PubMed ID: 26889931 [TBL] [Abstract][Full Text] [Related]
40. Crystal structure of the archaeal asparagine synthetase: interrelation with aspartyl-tRNA and asparaginyl-tRNA synthetases. Blaise M; Fréchin M; Oliéric V; Charron C; Sauter C; Lorber B; Roy H; Kern D J Mol Biol; 2011 Sep; 412(3):437-52. PubMed ID: 21820443 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]