BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10611400)

  • 21. Stochastic motif extraction using hidden Markov model.
    Fujiwara Y; Asogawa M; Konagaya A
    Proc Int Conf Intell Syst Mol Biol; 1994; 2():121-9. PubMed ID: 7584381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autoregressive and iterative hidden Markov models for periodicity detection and solenoid structure recognition in protein sequences.
    Song NY; Yan H
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):436-41. PubMed ID: 24235115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hidden Markov models that use predicted secondary structures for fold recognition.
    Hargbo J; Elofsson A
    Proteins; 1999 Jul; 36(1):68-76. PubMed ID: 10373007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hidden Markov Models for prediction of protein features.
    Bystroff C; Krogh A
    Methods Mol Biol; 2008; 413():173-98. PubMed ID: 18075166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Information-theoretic analysis and prediction of protein atomic burials: on the search for an informational intermediate between sequence and structure.
    Rocha JR; van der Linden MG; Ferreira DC; Azevêdo PH; Pereira de Araújo AF
    Bioinformatics; 2012 Nov; 28(21):2755-62. PubMed ID: 22923297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of local structure alphabets based on residue burial.
    Karchin R; Cline M; Karplus K
    Proteins; 2004 May; 55(3):508-18. PubMed ID: 15103615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HMMs in Protein Fold Classification.
    Lampros C; Papaloukas C; Exarchos T; Fotiadis DI
    Methods Mol Biol; 2017; 1552():13-27. PubMed ID: 28224488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method.
    Zhou H; Zhou Y
    Protein Sci; 2003 Jul; 12(7):1547-55. PubMed ID: 12824500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein secondary structure: entropy, correlations and prediction.
    Crooks GE; Brenner SE
    Bioinformatics; 2004 Jul; 20(10):1603-11. PubMed ID: 14988117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Addition of side chains to a known backbone with defined side-chain centroids.
    Kaźmierkiewicz R; Liwo A; Scheraga HA
    Biophys Chem; 2003; 100(1-3):261-80. PubMed ID: 12646370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis, clustering and prediction of the conformation of short and medium size loops connecting regular secondary structures.
    Rufino SD; Donate LE; Canard L; Blundell TL
    Pac Symp Biocomput; 1996; ():570-89. PubMed ID: 9390259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FORESST: fold recognition from secondary structure predictions of proteins.
    Di Francesco V; Munson PJ; Garnier J
    Bioinformatics; 1999 Feb; 15(2):131-40. PubMed ID: 10089198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions.
    Spassov VZ; Yan L; Flook PK
    Protein Sci; 2007 Mar; 16(3):494-506. PubMed ID: 17242380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Incorporating global information into secondary structure prediction with hidden Markov models of protein folds.
    Di Francesco V; McQueen P; Garnier J; Munson PJ
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():100-3. PubMed ID: 9322022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid.
    Mukherjee A; Bagchi B
    J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 9-state hidden Markov model using protein secondary structure information for protein fold recognition.
    Lee SY; Lee JY; Jung KS; Ryu KH
    Comput Biol Med; 2009 Jun; 39(6):527-34. PubMed ID: 19394594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advancing the Accuracy of Protein Fold Recognition by Utilizing Profiles From Hidden Markov Models.
    Lyons J; Dehzangi A; Heffernan R; Yang Y; Zhou Y; Sharma A; Paliwal K
    IEEE Trans Nanobioscience; 2015 Oct; 14(7):761-72. PubMed ID: 26208362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone.
    Pellecchia M; Szyperski T; Wall D; Georgopoulos C; Wüthrich K
    J Mol Biol; 1996 Jul; 260(2):236-50. PubMed ID: 8764403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of protein interdomain linker regions by a hidden Markov model.
    Bae K; Mallick BK; Elsik CG
    Bioinformatics; 2005 May; 21(10):2264-70. PubMed ID: 15746283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.