BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 10611454)

  • 21. Evidence for multiple terminal oxidases, including cytochrome d, in facultatively alkaliphilic Bacillus firmus OF4.
    Hicks DB; Plass RJ; Quirk PG
    J Bacteriol; 1991 Aug; 173(16):5010-6. PubMed ID: 1650340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli.
    Arslan E; Schulz H; Zufferey R; Künzler P; Thöny-Meyer L
    Biochem Biophys Res Commun; 1998 Oct; 251(3):744-7. PubMed ID: 9790980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product.
    Cotter PA; Chepuri V; Gennis RB; Gunsalus RP
    J Bacteriol; 1990 Nov; 172(11):6333-8. PubMed ID: 2172211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning of Bacillus stearothermophilus ctaA and heme A synthesis with the CtaA protein produced in Escherichia coli.
    Sakamoto J; Hayakawa A; Uehara T; Noguchi S; Sone N
    Biosci Biotechnol Biochem; 1999 Jan; 63(1):96-103. PubMed ID: 10052128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tryptophan-136 in subunit II of cytochrome bo3 from Escherichia coli may participate in the binding of ubiquinol.
    Ma J; Puustinen A; Wikström M; Gennis RB
    Biochemistry; 1998 Aug; 37(34):11806-11. PubMed ID: 9718303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a cytochrome a1 that functions as a ubiquinol oxidase in Acetobacter aceti.
    Fukaya M; Tayama K; Tamaki T; Ebisuya H; Okumura H; Kawamura Y; Horinouchi S; Beppu T
    J Bacteriol; 1993 Jul; 175(14):4307-14. PubMed ID: 8392509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substitutions of charged amino acid residues conserved in subunit I perturb the redox metal centers of the Escherichia coli bo-type ubiquinol oxidase.
    Kawasaki M; Mogi T; Anraku Y
    J Biochem; 1997 Aug; 122(2):422-9. PubMed ID: 9378723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of aeration during growth of Bacillus stearothermophilus on proton pumping activity and change of terminal oxidases.
    Sone N; Fujiwara Y
    J Biochem; 1991 Dec; 110(6):1016-21. PubMed ID: 1665485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homology in the structure and the prosthetic groups between two different terminal ubiquinol oxidases, cytochrome a1 and cytochrome o, of Acetobacter aceti.
    Matsushita K; Ebisuya H; Adachi O
    J Biol Chem; 1992 Dec; 267(34):24748-53. PubMed ID: 1332965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane-bound Bacillus cytochromes c and their phylogenetic position among bacterial class I cytochromes c.
    Sone N; Toh H
    FEMS Microbiol Lett; 1994 Oct; 122(3):203-10. PubMed ID: 7988862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial genes and proteins involved in the biogenesis of c-type cytochromes and terminal oxidases.
    Thöny-Meyer L; Loferer H; Ritz D; Hennecke H
    Biochim Biophys Acta; 1994 Aug; 1187(2):260-3. PubMed ID: 8075119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The symbiotically essential cbb(3)-type oxidase of Bradyrhizobium japonicum is a proton pump.
    Arslan E; Kannt A; Thöny-Meyer L; Hennecke H
    FEBS Lett; 2000 Mar; 470(1):7-10. PubMed ID: 10722835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assignment and functional roles of the cyoABCDE gene products required for the Escherichia coli bo-type quinol oxidase.
    Nakamura H; Saiki K; Mogi T; Anraku Y
    J Biochem; 1997 Aug; 122(2):415-21. PubMed ID: 9378722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of two terminal oxidases in Bacillus brevis and efficiency of energy conservation of the respiratory chain.
    Yaginuma A; Tsukita S; Sakamoto J; Sone N
    J Biochem; 1997 Nov; 122(5):969-76. PubMed ID: 9443812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxygen as Acceptor.
    Borisov VB; Verkhovsky MI
    EcoSal Plus; 2015; 6(2):. PubMed ID: 26734697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular features and catalytic activity of CuA-containing aco3-type cytochrome c oxidase from a facultative alkalophilic Bacillus.
    Yumoto I; Takahashi S; Kitagawa T; Fukumori Y; Yamanaka T
    J Biochem; 1993 Jul; 114(1):88-95. PubMed ID: 8407882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A.
    Rauhamäki V; Wikström M
    Biochim Biophys Acta; 2014 Jul; 1837(7):999-1003. PubMed ID: 24583065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton pumping and oxidase activity of thermophilic cytochrome oxidase remain after its extensive proteolysis.
    Yanagita Y; Sone N; Kagawa Y
    Biochem Biophys Res Commun; 1983 Jun; 113(2):575-80. PubMed ID: 6307293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The proton pump of heme-copper oxidases.
    Papa S; Capitanio N; Glaser P; Villani G
    Cell Biol Int; 1994 May; 18(5):345-55. PubMed ID: 8049679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and properties of cytochrome bo-type ubiquinol oxidase from a marine bacterium Vibrio alginolyticus.
    Miyoshi-Akiyama T; Hayashi M; Unemoto T
    Biochim Biophys Acta; 1993 Mar; 1141(2-3):283-7. PubMed ID: 8443214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.