These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10612035)

  • 1. Modeling of a roller-compaction process using neural networks and genetic algorithms.
    Turkoglu M; Aydin I; Murray M; Sakr A
    Eur J Pharm Biopharm; 1999 Nov; 48(3):239-45. PubMed ID: 10612035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of formulation composition on the properties of controlled release tablets prepared by roller compaction.
    Hariharan M; Wowchuk C; Nkansah P; Gupta VK
    Drug Dev Ind Pharm; 2004 Jul; 30(6):565-72. PubMed ID: 15285329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative binder efficiency modeling of dry granulation binders using roller compaction.
    Gupte A; DeHart M; Stagner WC; Haware RV
    Drug Dev Ind Pharm; 2017 Apr; 43(4):574-583. PubMed ID: 27977316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Tablet Formulation of Amorphous Solid Dispersions Prepared by Hot Melt Extrusion Using Quality by Design Approach.
    Agrawal A; Dudhedia M; Deng W; Shepard K; Zhong L; Povilaitis E; Zimny E
    AAPS PharmSciTech; 2016 Feb; 17(1):214-32. PubMed ID: 26757898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength.
    He X; Secreast PJ; Amidon GE
    J Pharm Sci; 2007 May; 96(5):1342-55. PubMed ID: 17455360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evaluation of fine-particle hydroxypropylcellulose as a roller compaction binder in pharmaceutical applications.
    Skinner GW; Harcum WW; Barnum PE; Guo JH
    Drug Dev Ind Pharm; 1999 Oct; 25(10):1121-8. PubMed ID: 10529893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple predictive model for the tensile strength of binary tablets.
    Wu CY; Best SM; Bentham AC; Hancock BC; Bonfield W
    Eur J Pharm Sci; 2005 Jun; 25(2-3):331-6. PubMed ID: 15911230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchrotron X-ray microtomographic study of tablet swelling.
    Laity PR; Cameron RE
    Eur J Pharm Biopharm; 2010 Jun; 75(2):263-76. PubMed ID: 20172028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and evaluation of an ispaghula based directly compressible matrixing agent for controlled release.
    Lalwani AN; Parikh JR
    Acta Pharm; 2008 Sep; 58(3):309-16. PubMed ID: 19103567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel drug delivery devices for providing linear release profiles fabricated by 3DP.
    Yu DG; Branford-White C; Ma ZH; Zhu LM; Li XY; Yang XL
    Int J Pharm; 2009 Mar; 370(1-2):160-6. PubMed ID: 19118612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of manufacturing process parameters causing multilayer tablets delamination.
    Bellini M; Walther M; Bodmeier R
    Int J Pharm; 2019 Oct; 570():118607. PubMed ID: 31421200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustained-release effect of codried excipients of microcrystalline cellulose and Ganoderma fiber.
    Ke W; Ho H; Tsai T; Sheu M
    Eur J Pharm Biopharm; 2001 May; 51(3):215-9. PubMed ID: 11343885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine-Particle ethylcellulose as a tablet binder in direct compression, immediate-release tablets.
    Desai RP; Neau SH; Pather SI; Johnston TP
    Drug Dev Ind Pharm; 2001 Aug; 27(7):633-41. PubMed ID: 11694010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming.
    Barmpalexis P; Kachrimanis K; Georgarakis E
    Eur J Pharm Biopharm; 2011 Jan; 77(1):122-31. PubMed ID: 20934511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of cellulose ether polymers on ibuprofen release from matrix tablets.
    Vueba ML; Batista de Carvalho LA; Veiga F; Sousa JJ; Pina ME
    Drug Dev Ind Pharm; 2005 Aug; 31(7):653-65. PubMed ID: 16207613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desktop 3D printing of controlled release pharmaceutical bilayer tablets.
    Khaled SA; Burley JC; Alexander MR; Roberts CJ
    Int J Pharm; 2014 Jan; 461(1-2):105-11. PubMed ID: 24280018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of some compression aids in tableting of roller compacted swellable core drug layer.
    Golchert D; Bines E; Carmody A
    Int J Pharm; 2013 Sep; 453(2):322-8. PubMed ID: 23796839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of API concentration on the roller compaction process: modeling and prediction of the post compacted ribbon, granule and tablet properties using multivariate data analysis.
    Boersen N; Carvajal MT; Morris KR; Peck GE; Pinal R
    Drug Dev Ind Pharm; 2015; 41(9):1470-8. PubMed ID: 25212638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustained release of acetaminophen from a heterogeneous mixture of two hydrophilic non-ionic cellulose ether polymers.
    Ebube NK; Jones AB
    Int J Pharm; 2004 Mar; 272(1-2):19-27. PubMed ID: 15019065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-spray Drying with HPMC as a Platform to Improve Direct Compaction Properties of Various Tablet Fillers.
    Li J; Zhao L; Lin X; Shen L; Feng Y
    AAPS PharmSciTech; 2017 Nov; 18(8):3105-3115. PubMed ID: 28523632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.