These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 10612607)
1. Chloramine and copper sulfate as control agents of planktonic larvae of Chironomus luridus in water supply systems. Halpern M; Gasith A; Teltsch B; Porat R; Broza M J Am Mosq Control Assoc; 1999 Dec; 15(4):453-7. PubMed ID: 10612607 [TBL] [Abstract][Full Text] [Related]
2. Shock chloramination: potential treatment for Chironomidae (Diptera) larvae nuisance abatement in water supply systems. Broza M; Halpern M; Teltsch B; Porat R; Gasith A J Econ Entomol; 1998 Aug; 91(4):834-40. PubMed ID: 9725031 [TBL] [Abstract][Full Text] [Related]
3. The protective nature of Chironomus luridus larval tubes against copper sulfate. Halpern M; Gasith A; Bresler VM; Broza M J Insect Sci; 2002; 2():8. PubMed ID: 15455042 [TBL] [Abstract][Full Text] [Related]
4. Immunotoxicological profile of chloramine in female B6C3F1 mice when administered in the drinking water for 28 days. Guo TL; Germolec DR; Collins BJ; Luebke RW; Auttachoat W; Smith MJ; White KL J Immunotoxicol; 2011; 8(4):381-8. PubMed ID: 22017662 [TBL] [Abstract][Full Text] [Related]
5. Effects of copper sulfate on growth, development, and escape behavior in Epidalea calamita embryos and larvae. García-Muñoz E; Guerrero F; Parra G Arch Environ Contam Toxicol; 2009 Apr; 56(3):557-65. PubMed ID: 18726539 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of biocidal efficacy of Chloramine T trihydrate on planktonic and sessile bacteria in a model cooling tower water system. Sanli NO Water Sci Technol; 2019 Feb; 79(3):526-536. PubMed ID: 30924807 [TBL] [Abstract][Full Text] [Related]
8. 60Co accumulation from sediment and planktonic algae by midge larvae (Chironomus luridus). Baudin JP; Nucho R Environ Pollut; 1992; 76(2):133-40. PubMed ID: 15091994 [TBL] [Abstract][Full Text] [Related]
9. Impact of environmental factors on the toxicity of Bacillus thuringiensis var. israelensis IPS82 to Chironomus kiiensis. Lei P; Zhao WM; Yang SY; Zhang JS; Liu LJ J Am Mosq Control Assoc; 2005 Mar; 21(1):59-63. PubMed ID: 15825763 [TBL] [Abstract][Full Text] [Related]
10. Illness in hemodialysis patients after exposure to chloramine contaminated dialysate. Tipple MA; Shusterman N; Bland LA; McCarthy MA; Favero MS; Arduino MJ; Reid MH; Jarvis WR ASAIO Trans; 1991; 37(4):588-91. PubMed ID: 1768494 [TBL] [Abstract][Full Text] [Related]
11. Algicidal effectiveness of Clearigate, Cutrine-Plus, and copper sulfate and margins of safety associated with their use. Murray-Gulde CL; Heatley JE; Schwartzman AL; Rodgers JH Arch Environ Contam Toxicol; 2002 Jul; 43(1):19-27. PubMed ID: 12045870 [TBL] [Abstract][Full Text] [Related]
12. Changes in blood lead levels associated with use of chloramines in water treatment systems. Miranda ML; Kim D; Hull AP; Paul CJ; Galeano MA Environ Health Perspect; 2007 Feb; 115(2):221-5. PubMed ID: 17384768 [TBL] [Abstract][Full Text] [Related]
13. Some drinking-water disinfectants and contaminants, including arsenic. Monographs on chloramine, chloral and chloral hydrate, dichloroacetic acid, trichloroacetic acid and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans IARC Monogr Eval Carcinog Risks Hum; 2004; 84():269-477. PubMed ID: 15645578 [No Abstract] [Full Text] [Related]
14. Modeling chloramine decay in full-scale drinking water supply systems. Ricca H; Aravinthan V; Mahinthakumar G Water Environ Res; 2019 May; 91(5):441-454. PubMed ID: 30624831 [TBL] [Abstract][Full Text] [Related]
15. The health effects of chloramines in potable water supplies: a literature review. Moore GS; Calabrese EJ J Environ Pathol Toxicol; 1980 Aug; 4(1):257-63. PubMed ID: 7003050 [No Abstract] [Full Text] [Related]
16. Toxicity of monochloramine in rat: an alternative drinking water disinfectant. Abdel-Rahman MS; Suh DH; Bull RJ J Toxicol Environ Health; 1984; 13(4-6):825-34. PubMed ID: 6492203 [TBL] [Abstract][Full Text] [Related]
17. Responses of Lyngbya wollei to exposures of copper-based algaecides: the critical burden concept. Bishop WM; Rodgers JH Arch Environ Contam Toxicol; 2012 Apr; 62(3):403-10. PubMed ID: 21968539 [TBL] [Abstract][Full Text] [Related]
18. [Study of the toxic properties of preservatives used in water reclamation systems]. Lobacheva GV; Pak ZP; Nazarov NM; Iakimova IV Kosm Biol Aviakosm Med; 1985; 19(1):70-2. PubMed ID: 3974187 [TBL] [Abstract][Full Text] [Related]
19. Acute and chronic toxicities of Irgarol alone and in combination with copper to the marine copepod Tigriopus japonicus. Bao VW; Leung KM; Lui GC; Lam MH Chemosphere; 2013 Jan; 90(3):1140-8. PubMed ID: 23069205 [TBL] [Abstract][Full Text] [Related]
20. [Persistence properties of microflora of open water reservoirs and drinking water]. Misetov IA; Nemtseva NV Zh Mikrobiol Epidemiol Immunobiol; 2000; (4 Suppl):95-9. PubMed ID: 12712526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]