BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10613320)

  • 21. Local control of carcinoma of the tonsil by radiation therapy: an analysis of patterns of fractionation in nine institutions.
    Withers HR; Peters LJ; Taylor JM; Owen JB; Morrison WH; Schultheiss TE; Keane T; O'Sullivan B; van Dyk J; Gupta N
    Int J Radiat Oncol Biol Phys; 1995 Oct; 33(3):549-62. PubMed ID: 7558943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lyman-Kutcher-Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data.
    Semenenko VA; Li XA
    Phys Med Biol; 2008 Feb; 53(3):737-55. PubMed ID: 18199912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fundamental form of a population TCP model in the limit of large heterogeneity.
    Carlone MC; Warkentin B; Stavrev P; Fallone BG
    Med Phys; 2006 Jun; 33(6):1634-42. PubMed ID: 16872071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor dose-response and repopulation.
    Maciejewski B; Withers HR; Taylor JM; Hliniak A
    Int J Radiat Oncol Biol Phys; 1989 Mar; 16(3):831-43. PubMed ID: 2921175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Derivation of the optimum dose per fraction from the linear quadratic model.
    Jones B; Tan LT; Dale RG
    Br J Radiol; 1995 Aug; 68(812):894-902. PubMed ID: 7551788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Substructure in the radiation survival response at low dose in cells of human tumor cell lines.
    Skarsgard LD; Skwarchuk MW; Wouters BG; Durand RE
    Radiat Res; 1996 Oct; 146(4):388-98. PubMed ID: 8927711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitivity of human squamous cell carcinoma of the larynx to fractionated radiotherapy.
    Rezvani M; Fowler JF; Hopewell JW; Alcock CJ
    Br J Radiol; 1993 Mar; 66(783):245-55. PubMed ID: 8472118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of fractionated doses of radiation on mouse spinal cord.
    Lo Y; Taylor JM; McBride WH; Withers HR
    Int J Radiat Oncol Biol Phys; 1993 Sep; 27(2):309-17. PubMed ID: 8407405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How worthwhile are short schedules in radiotherapy? A series of exploratory calculations.
    Fowler JF
    Radiother Oncol; 1990 Jun; 18(2):165-81. PubMed ID: 2367691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of prolonged fraction delivery times on tumor control: a note of caution for intensity-modulated radiation therapy (IMRT).
    Wang JZ; Li XA; D'Souza WD; Stewart RD
    Int J Radiat Oncol Biol Phys; 2003 Oct; 57(2):543-52. PubMed ID: 12957268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Steepness of the clinical dose-control curve and variation in the in vitro radiosensitivity of head and neck squamous cell carcinoma.
    Bentzen SM
    Int J Radiat Biol; 1992 Mar; 61(3):417-23. PubMed ID: 1347075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical implications of incomplete repair parameters for rat spinal cord: the feasibility of large doses per fraction in PDR and HDR brachytherapy.
    Pop LA; Millar WT; Visser AG; van der Kogel AJ
    Int J Radiat Oncol Biol Phys; 2001 Sep; 51(1):215-26. PubMed ID: 11516872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intensity-modulated radiotherapy improves target coverage, spinal cord sparing and allows dose escalation in patients with locally advanced cancer of the larynx.
    Clark CH; Bidmead AM; Mubata CD; Harrington KJ; Nutting CM
    Radiother Oncol; 2004 Feb; 70(2):189-98. PubMed ID: 15028407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of optimum dose per fraction for high LET radiations: implications for proton radiotherapy.
    Jones B; Dale RG
    Int J Radiat Oncol Biol Phys; 2000 Dec; 48(5):1549-57. PubMed ID: 11121661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intestinal crypt clonogens: a new interpretation of radiation survival curve shape and clonogenic cell number.
    Roberts SA; Hendry JH; Potten CS
    Cell Prolif; 2003 Aug; 36(4):215-31. PubMed ID: 12950390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical implications of heterogeneity of tumor response to radiation therapy.
    Suit H; Skates S; Taghian A; Okunieff P; Efird JT
    Radiother Oncol; 1992 Dec; 25(4):251-60. PubMed ID: 1480770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal radiotherapy for prostate cancer: predictions for conventional external beam, IMRT, and brachytherapy from radiobiologic models.
    King CR; DiPetrillo TA; Wazer DE
    Int J Radiat Oncol Biol Phys; 2000 Jan; 46(1):165-72. PubMed ID: 10656389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tumor radioresponsiveness versus fractionation sensitivity.
    Thames HD; Suit HD
    Int J Radiat Oncol Biol Phys; 1986 Apr; 12(4):687-91. PubMed ID: 3700173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The reduction of tumour control with increasing overall time: mathematical considerations.
    Jones B; Dale RG
    Br J Radiol; 1996 Sep; 69(825):830-8. PubMed ID: 8983587
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneity in the fractionation sensitivities of human tumor cell lines: studies in a three-dimensional model system.
    Stuschke M; Budach V; Stüben G; Streffer C; Sack H
    Int J Radiat Oncol Biol Phys; 1995 May; 32(2):395-408. PubMed ID: 7751182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.