BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10613841)

  • 1. Regulation of the alpha-galactosidase activity in Streptococcus pneumoniae: characterization of the raffinose utilization system.
    Rosenow C; Maniar M; Trias J
    Genome Res; 1999 Dec; 9(12):1189-97. PubMed ID: 10613841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon.
    Kaufman GE; Yother J
    J Bacteriol; 2007 Jul; 189(14):5183-92. PubMed ID: 17496092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of dihydrolipoamide dehydrogenase in regulation of raffinose transport in Streptococcus pneumoniae.
    Tyx RE; Roche-Hakansson H; Hakansson AP
    J Bacteriol; 2011 Jul; 193(14):3512-24. PubMed ID: 21602335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The
    Morabbi Heravi K; Watzlawick H; Altenbuchner J
    J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31138628
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular analysis of an enigmatic
    Hobbs JK; Meier EPW; Pluvinage B; Mey MA; Boraston AB
    J Biol Chem; 2019 Nov; 294(46):17197-17208. PubMed ID: 31591266
    [No Abstract]   [Full Text] [Related]  

  • 6. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli.
    Aslanidis C; Schmid K; Schmitt R
    J Bacteriol; 1989 Dec; 171(12):6753-63. PubMed ID: 2556373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae.
    Iyer R; Baliga NS; Camilli A
    J Bacteriol; 2005 Dec; 187(24):8340-9. PubMed ID: 16321938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the melA locus for alpha-galactosidase in Lactobacillus plantarum.
    Silvestroni A; Connes C; Sesma F; De Giori GS; Piard JC
    Appl Environ Microbiol; 2002 Nov; 68(11):5464-71. PubMed ID: 12406739
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Agnew HN; Brazel EB; Tikhomirova A; van der Linden M; McLean KT; Paton JC; Trappetti C
    Front Cell Infect Microbiol; 2022; 12():866259. PubMed ID: 35433506
    [No Abstract]   [Full Text] [Related]  

  • 10. A genetic element present on megaplasmids allows Enterococcus faecium to use raffinose as carbon source.
    Zhang X; Vrijenhoek JE; Bonten MJ; Willems RJ; van Schaik W
    Environ Microbiol; 2011 Feb; 13(2):518-28. PubMed ID: 20946531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of genes involved in the metabolism of alpha-galactosides by Lactococcus raffinolactis.
    Boucher I; Vadeboncoeur C; Moineau S
    Appl Environ Microbiol; 2003 Jul; 69(7):4049-56. PubMed ID: 12839781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The promoter of the operon encoding the F0F1 ATPase of Streptococcus pneumoniae is inducible by pH.
    Martín-Galiano AJ; Ferrándiz MJ; de la Campa AG
    Mol Microbiol; 2001 Sep; 41(6):1327-38. PubMed ID: 11580837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism.
    Russell RR; Aduse-Opoku J; Sutcliffe IC; Tao L; Ferretti JJ
    J Biol Chem; 1992 Mar; 267(7):4631-7. PubMed ID: 1537846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional identification of Arabidopsis ATSIP2 (At3g57520) as an alkaline α-galactosidase with a substrate specificity for raffinose and an apparent sink-specific expression pattern.
    Peters S; Egert A; Stieger B; Keller F
    Plant Cell Physiol; 2010 Oct; 51(10):1815-9. PubMed ID: 20739305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a double-crossover markerless gene deletion system in Bifidobacterium longum: functional analysis of the α-galactosidase gene for raffinose assimilation.
    Hirayama Y; Sakanaka M; Fukuma H; Murayama H; Kano Y; Fukiya S; Yokota A
    Appl Environ Microbiol; 2012 Jul; 78(14):4984-94. PubMed ID: 22582061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of bifidobacterial promoters in Bifidobacterium longum and Escherichia coli using the α-galactosidase gene as a reporter.
    Sakanaka M; Tamai S; Hirayama Y; Onodera A; Koguchi H; Kano Y; Yokota A; Fukiya S
    J Biosci Bioeng; 2014 Nov; 118(5):489-95. PubMed ID: 24932968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The multiple-sugar metabolism (msm) gene cluster of Streptococcus mutans is transcribed as a single operon.
    McLaughlin RE; Ferretti JJ
    FEMS Microbiol Lett; 1996 Jul; 140(2-3):261-4. PubMed ID: 8764489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose.
    Trindade MI; Abratt VR; Reid SJ
    Appl Environ Microbiol; 2003 Jan; 69(1):24-32. PubMed ID: 12513973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum.
    Muscariello L; Marasco R; De Felice M; Sacco M
    Appl Environ Microbiol; 2001 Jul; 67(7):2903-7. PubMed ID: 11425700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.