BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 10613865)

  • 21. Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate iron-sulfur cluster assembly.
    Strain J; Lorenz CR; Bode J; Garland S; Smolen GA; Ta DT; Vickery LE; Culotta VC
    J Biol Chem; 1998 Nov; 273(47):31138-44. PubMed ID: 9813017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial protein oxidation in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD): evidence that MnSOD and CuZnSOD have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage.
    O'Brien KM; Dirmeier R; Engle M; Poyton RO
    J Biol Chem; 2004 Dec; 279(50):51817-27. PubMed ID: 15385544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection.
    Slekar KH; Kosman DJ; Culotta VC
    J Biol Chem; 1996 Nov; 271(46):28831-6. PubMed ID: 8910528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Cu,Zn superoxide dismutase (SOD1) gene knock-out mutant of Cryptococcus neoformans var. gattii: role in biology and virulence.
    Narasipura SD; Ault JG; Behr MJ; Chaturvedi V; Chaturvedi S
    Mol Microbiol; 2003 Mar; 47(6):1681-94. PubMed ID: 12622821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae.
    Martins D; Nguyen D; English AM
    Sci Rep; 2019 Jun; 9(1):9185. PubMed ID: 31235707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cu,Zn-superoxide dismutase of Saccharomyces cerevisiae is required for resistance to hyperosmosis.
    Garay-Arroyo A; Lledías F; Hansberg W; Covarrubias AA
    FEBS Lett; 2003 Mar; 539(1-3):68-72. PubMed ID: 12650928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutations in Saccharomyces cerevisiae iron-sulfur cluster assembly genes and oxidative stress relevant to Cu,Zn superoxide dismutase.
    Jensen LT; Sanchez RJ; Srinivasan C; Valentine JS; Culotta VC
    J Biol Chem; 2004 Jul; 279(29):29938-43. PubMed ID: 15107423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity.
    Lin SJ; Culotta VC
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3784-8. PubMed ID: 7731983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative stress and cell death induced by hydrogen peroxide, 4-hydroxynonenal or serum deprivation: potentiation of injury by ALS-related mutant superoxide dismutases and protection by Bcl-2.
    Lee M; Hyun DH; Halliwell B; Jenner P
    J Neurochem; 2001 Jul; 78(2):209-20. PubMed ID: 11461956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae.
    Zhang L; Onda K; Imai R; Fukuda R; Horiuchi H; Ohta A
    Biochem Biophys Res Commun; 2003 Jul; 307(2):308-14. PubMed ID: 12859956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.
    Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A
    Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene.
    Melo SC; Santos RX; Melgaço AC; Pereira AC; Pungartnik C; Brendel M
    Int J Mol Sci; 2015 Jun; 16(6):12324-44. PubMed ID: 26039235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional activation in yeast in response to copper deficiency involves copper-zinc superoxide dismutase.
    Wood LK; Thiele DJ
    J Biol Chem; 2009 Jan; 284(1):404-413. PubMed ID: 18977757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake.
    Dancis A; Haile D; Yuan DS; Klausner RD
    J Biol Chem; 1994 Oct; 269(41):25660-7. PubMed ID: 7929270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protective role of mitochondrial superoxide dismutase against high osmolarity, heat and metalloid stress in saccharomyces cerevisiae.
    Dziadkowiec D; Krasowska A; Liebner A; Sigler K
    Folia Microbiol (Praha); 2007; 52(2):120-6. PubMed ID: 17575910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity.
    Bermingham-McDonogh O; Gralla EB; Valentine JS
    Proc Natl Acad Sci U S A; 1988 Jul; 85(13):4789-93. PubMed ID: 3290902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae.
    Pereira MD; Eleutherio EC; Panek AD
    BMC Microbiol; 2001; 1():11. PubMed ID: 11483159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells: an in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds.
    Wallace MA; Bailey S; Fukuto JM; Valentine JS; Gralla EB
    Chem Res Toxicol; 2005 Aug; 18(8):1279-86. PubMed ID: 16097801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Saccharomyces cerevisiae LYS7 gene is involved in oxidative stress protection.
    Gamonet F; Lauquin GJ
    Eur J Biochem; 1998 Feb; 251(3):716-23. PubMed ID: 9490044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlor in Saccharomyces cerevisiae.
    Rattanawong K; Kerdsomboon K; Auesukaree C
    Free Radic Biol Med; 2015 Dec; 89():963-71. PubMed ID: 26518674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.