BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10613963)

  • 1. FISH analysis in chromophobe renal-cell carcinoma.
    Iqbal MA; Akhtar M; Ulmer C; Al-Dayel F; Paterson MC
    Diagn Cytopathol; 2000 Jan; 22(1):3-6. PubMed ID: 10613963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal oncocytoma: a comparative clinicopathologic study and fluorescent in-situ hybridization analysis of 73 cases with long-term follow-up.
    Dvorakova M; Dhir R; Bastacky SI; Cieply KM; Acquafondata MB; Sherer CR; Mercuri TL; Parwani AV
    Diagn Pathol; 2010 May; 5():32. PubMed ID: 20497539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome 1 analysis in chromophobe renal cell carcinomas with tissue microarray (TMA)-facilitated fluorescence in situ hybridization (FISH) demonstrates loss of 1p/1 which is also present in renal oncocytomas.
    Meyer PN; Cao Y; Jacobson K; Krausz T; Flanigan RC; Picken MM
    Diagn Mol Pathol; 2008 Sep; 17(3):141-4. PubMed ID: 18382368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interphase cytogenetic analysis with centromeric probes for chromosomes 1, 2, 6, 10, and 17 in 11 tumors from a patient with bilateral renal oncocytosis.
    Cossu-Rocca P; Eble JN; Zhang S; Bonsib SM; Martignoni G; Brunelli M; Cheng L
    Mod Pathol; 2008 Apr; 21(4):498-504. PubMed ID: 18246052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromophobe renal cell carcinoma: useful diagnostic application of imprint cytology and fluorescence in situ hybridization of chromosomes 10 and 21 in two cases of typical and eosinophilic variants.
    Kuroda N; Katto K; Yamaguchi T; Kawada T; Imamura Y; Hes O; Michal M; Shuin T; Lee GH
    Med Mol Morphol; 2008 Dec; 41(4):227-32. PubMed ID: 19107613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of FISH analysis for diagnosis of renal cell carcinoma subtypes.
    Iqbal MA; Akhtar M; Al Dayel F; Ulmer C; Paterson MC
    Ann Saudi Med; 1999; 19(6):495-500. PubMed ID: 17277466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eosinophilic and classic chromophobe renal cell carcinomas have similar frequent losses of multiple chromosomes from among chromosomes 1, 2, 6, 10, and 17, and this pattern of genetic abnormality is not present in renal oncocytoma.
    Brunelli M; Eble JN; Zhang S; Martignoni G; Delahunt B; Cheng L
    Mod Pathol; 2005 Feb; 18(2):161-9. PubMed ID: 15467713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical aberrations of chromosomes 1 and 7 in renal cell carcinomas as detected by interphase cytogenetics.
    Beck JL; Hopman AH; Feitz WF; Schalken J; Schaafsma HE; Van de Kaa CA; Ramaekers FC; Hanselaar AG; De Wilde PC
    J Pathol; 1995 Jun; 176(2):123-35. PubMed ID: 7636622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyploidization and losses of chromosomes 1, 2, 6, 10, 13, and 17 in three cases of chromophobe renal cell carcinomas.
    Gunawan B; Bergmann F; Braun S; Hemmerlein B; Ringert RH; Jakse G; Füzesi L
    Cancer Genet Cytogenet; 1999 Apr; 110(1):57-61. PubMed ID: 10198624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interphase cytogenetics and flow cytometry analyses of renal tumours.
    Grollino MG; Cavallo D; Di Silverio F; Rocchi M; De Vita R
    Anticancer Res; 1993; 13(6A):2239-44. PubMed ID: 8297139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal gains in the sarcomatoid transformation of chromophobe renal cell carcinoma.
    Brunelli M; Gobbo S; Cossu-Rocca P; Cheng L; Hes O; Delahunt B; Pea M; Bonetti F; Mina MM; Ficarra V; Chilosi M; Eble JN; Menestrina F; Martignoni G
    Mod Pathol; 2007 Mar; 20(3):303-9. PubMed ID: 17277768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytogenetic and immunohistochemical study of 42 pigmented microcystic chromophobe renal cell carcinoma (PMChRCC).
    Gutiérrez FJQ; Panizo Á; Tienza A; Rodriguez I; Sola JJ; Temprana-Salvador J; de Torres I; Pardo-Mindán J
    Virchows Arch; 2018 Aug; 473(2):209-217. PubMed ID: 29931469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromophobe renal cell carcinoma--chromosomal aberration variability and its relation to Paner grading system: an array CGH and FISH analysis of 37 cases.
    Sperga M; Martinek P; Vanecek T; Grossmann P; Bauleth K; Perez-Montiel D; Alvarado-Cabrero I; Nevidovska K; Lietuvietis V; Hora M; Michal M; Petersson F; Kuroda N; Suster S; Branzovsky J; Hes O
    Virchows Arch; 2013 Oct; 463(4):563-73. PubMed ID: 23913167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent and chromogenic in situ hybridization of CEN17q as a potent useful diagnostic marker for Birt-Hogg-Dubé syndrome-associated chromophobe renal cell carcinomas.
    Kato I; Iribe Y; Nagashima Y; Kuroda N; Tanaka R; Nakatani Y; Hasumi H; Yao M; Furuya M
    Hum Pathol; 2016 Jun; 52():74-82. PubMed ID: 26980015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular genetic evidence for the independent origin of multifocal papillary tumors in patients with papillary renal cell carcinomas.
    Jones TD; Eble JN; Wang M; MacLennan GT; Delahunt B; Brunelli M; Martignoni G; Lopez-Beltran A; Bonsib SM; Ulbright TM; Zhang S; Nigro K; Cheng L
    Clin Cancer Res; 2005 Oct; 11(20):7226-33. PubMed ID: 16243792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of tissue microarrays for assessment of chromosomal abnormalities in chromophobe renal cell carcinoma.
    Brunelli M; Delahunt B; Ficarra V; Gobbo S; Eccher A; Cossu-Rocca P; Zattoni F; Cheng L; Eble JN; Martignoni G
    Anal Quant Cytol Histol; 2009 Dec; 31(6):401-9. PubMed ID: 20698356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous chromosome 7 and 17 gain and sex chromosome loss provide evidence that renal metanephric adenoma is related to papillary renal cell carcinoma.
    Brown JA; Anderl KL; Borell TJ; Qian J; Bostwick DG; Jenkins RB
    J Urol; 1997 Aug; 158(2):370-4. PubMed ID: 9224305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clear-cell and papillary carcinoma of the kidney: an analysis of chromosome 3, 7, and 17 abnormalities by microsatellite amplification, cytogenetics, and fluorescence in situ hybridization.
    Hughson MD; Dickman K; Bigler SA; Meloni AM; Sandberg AA
    Cancer Genet Cytogenet; 1998 Oct; 106(2):93-104. PubMed ID: 9797772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interphase cytogenetics of multicentric renal cell tumours confirm associations of specific aberrations with defined cytomorphologies.
    Amo-Takyi BK; Mittermayer C; Günther K; Handt S
    Br J Cancer; 2000 Apr; 82(8):1407-14. PubMed ID: 10780519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density genome array is superior to fluorescence in-situ hybridization analysis of monosomy 3 in choroidal melanoma fine needle aspiration biopsy.
    Young TA; Burgess BL; Rao NP; Gorin MB; Straatsma BR
    Mol Vis; 2007 Dec; 13():2328-33. PubMed ID: 18199974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.