BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 10614640)

  • 21. Neuropeptide Y inhibits spontaneous alpha-melanocyte-stimulating hormone (alpha-MSH) release via a Y(5) receptor and suppresses thyrotropin-releasing hormone-induced alpha-MSH secretion via a Y(1) receptor in frog melanotrope cells.
    Galas L; Tonon MC; Beaujean D; Fredriksson R; Larhammar D; Lihrmann I; Jegou S; Fournier A; Chartrel N; Vaudry H
    Endocrinology; 2002 May; 143(5):1686-94. PubMed ID: 11956150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of ranakinin, a novel tachykinin, on cytosolic free calcium in frog adrenochromaffin cells.
    Kodjo MK; Leboulenger F; Conlon JM; Vaudry H
    Endocrinology; 1995 Oct; 136(10):4535-42. PubMed ID: 7664674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dopamine inhibits corticosteroid secretion from frog adrenal gland, in vitro.
    Morra M; Leboulenger F; Vaudry H
    Endocrinology; 1990 Jul; 127(1):218-26. PubMed ID: 2163311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurotensin stimulates both calcium mobilization from inositol trisphosphate-sensitive intracellular stores and calcium influx through membrane channels in frog pituitary melanotrophs.
    Belmeguenai A; Desrues L; Leprince J; Vaudry H; Tonon MC; Louiset E
    Endocrinology; 2003 Dec; 144(12):5556-67. PubMed ID: 14500581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of action of gamma-aminobutyric acid on frog melanotrophs.
    Desrues L; Vaudry H; Lamacz M; Tonon MC
    J Mol Endocrinol; 1995 Feb; 14(1):1-12. PubMed ID: 7772233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of vasotocin-like immunoreactivity in chromaffin cells of the frog adrenal gland: effect of vasotocin on corticosteroid secretion.
    Larcher A; Delarue C; Idres S; Lefebvre H; Feuilloley M; Vandesande F; Pelletier G; Vaudry H
    Endocrinology; 1989 Nov; 125(5):2691-700. PubMed ID: 2676489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of protein kinase C and protein tyrosine kinase in thyrotropin-releasing hormone-induced stimulation of alpha-melanocyte-stimulating hormone secretion in frog melanotrope cells.
    Galas L; Lamacz M; Garnier M; Roubos EW; Tonon MC; Vaudry H
    Endocrinology; 1999 Jul; 140(7):3264-72. PubMed ID: 10385423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dopamine inhibits inositol phosphate production, arachidonic acid formation, and corticosteroid release by frog adrenal gland through a pertussis toxin-sensitive G-protein.
    Morra M; Leboulenger F; Desrues L; Tonon MC; Vaudry H
    Endocrinology; 1991 May; 128(5):2625-32. PubMed ID: 1902170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the receptor mediating the effect of calcitonin gene-related peptide in the frog adrenal gland.
    Esneu M; Delarue C; Fournier A; Vaudry H
    Eur J Pharmacol; 1996 Jul; 308(2):187-93. PubMed ID: 8840131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of T-type calcium channels in the mechanism of action of 5-HT in rat glomerulosa cells: a novel signaling pathway for the 5-HT7 receptor.
    Lenglet S; Louiset E; Delarue C; Vaudry H; Contesse V
    Endocr Res; 2002 Nov; 28(4):651-5. PubMed ID: 12530678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates endozepine release from cultured rat astrocytes via a PKA-dependent mechanism.
    Masmoudi O; Gandolfo P; Leprince J; Vaudry D; Fournier A; Patte-Mensah C; Vaudry H; Tonon MC
    FASEB J; 2003 Jan; 17(1):17-27. PubMed ID: 12522108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunohistochemical distribution, biochemical characterization, and biological action of tachykinins in the frog adrenal gland.
    Leboulenger F; Vaglini L; Conlon JM; Homo-Delarche F; Wang Y; Kerdelhue B; Pelletier G; Vaudry H
    Endocrinology; 1993 Nov; 133(5):1999-2008. PubMed ID: 7691584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunohistochemical localization, biochemical characterization, and biological activity of neurotensin in the frog adrenal gland.
    Sicard F; Vaudry H; Braun B; Chartrel N; Leprince J; Conlon JM; Delarue C
    Endocrinology; 2000 Jul; 141(7):2450-7. PubMed ID: 10875245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hamster alpha 1B-adrenergic receptor directly activates Gs in the transfected Chinese hamster ovary cells.
    Horie K; Itoh H; Tsujimoto G
    Mol Pharmacol; 1995 Sep; 48(3):392-400. PubMed ID: 7565618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atrial natriuretic peptide-C receptor-induced attenuation of adenylyl cyclase signaling activates phosphatidylinositol turnover in A10 vascular smooth muscle cells.
    Mouawad R; Li Y; Anand-Srivastava MB
    Mol Pharmacol; 2004 Apr; 65(4):917-24. PubMed ID: 15044621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Benzamide derivatives provide evidence for the involvement of a 5-HT4 receptor type in the mechanism of action of serotonin in frog adrenocortical cells.
    Idres S; Delarue C; Lefebvre H; Vaudry H
    Brain Res Mol Brain Res; 1991 Jun; 10(3):251-8. PubMed ID: 1653392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of dopamine receptors associated with steroid secretion in frog adrenocortical cells.
    Morra M; Leboulenger F; Vaudry H
    J Mol Endocrinol; 1992 Feb; 8(1):43-52. PubMed ID: 1543533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blockade of T-type voltage-dependent Ca2+ channels by benidipine, a dihydropyridine calcium channel blocker, inhibits aldosterone production in human adrenocortical cell line NCI-H295R.
    Akizuki O; Inayoshi A; Kitayama T; Yao K; Shirakura S; Sasaki K; Kusaka H; Matsubara M
    Eur J Pharmacol; 2008 Apr; 584(2-3):424-34. PubMed ID: 18331727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pituitary adenylate cyclase-activating polypeptide induces a sustained increase in intracellular free Ca(2+) concentration and catechol amine release by activating Ca(2+) influx via receptor-stimulated Ca(2+) entry, independent of store-operated Ca(2+) channels, and voltage-dependent Ca(2+) channels in bovine adrenal medullary chromaffin cells.
    Morita K; Sakakibara A; Kitayama S; Kumagai K; Tanne K; Dohi T
    J Pharmacol Exp Ther; 2002 Sep; 302(3):972-82. PubMed ID: 12183654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pituitary adenylate cyclase-activating polypeptide causes rapid Ca2+ release from intracellular stores and long lasting Ca2+ influx mediated by Na+ influx-dependent membrane depolarization in bovine adrenal chromaffin cells.
    Tanaka K; Shibuya I; Nagamoto T; Yamashita H; Kanno T
    Endocrinology; 1996 Mar; 137(3):956-66. PubMed ID: 8603609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.