BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 10614816)

  • 1. Interactions between a macrophage cell line (J774A1) and surface-modified poly (D,L-lactide) nanocapsules bearing poly(ethylene glycol).
    Mosqueira VC; Legrand P; Gref R; Heurtault B; Appel M; Barratt G
    J Drug Target; 1999; 7(1):65-78. PubMed ID: 10614816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules.
    Mosqueira VC; Legrand P; Gulik A; Bourdon O; Gref R; Labarre D; Barratt G
    Biomaterials; 2001 Nov; 22(22):2967-79. PubMed ID: 11575471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-modified and conventional nanocapsules as novel formulations for parenteral delivery of halofantrine.
    Mosqueira VC; Legrand P; Barratt G
    J Nanosci Nanotechnol; 2006; 6(9-10):3193-202. PubMed ID: 17048536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density.
    Mosqueira VC; Legrand P; Morgat JL; Vert M; Mysiakine E; Gref R; Devissaguet JP; Barratt G
    Pharm Res; 2001 Oct; 18(10):1411-9. PubMed ID: 11697466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of the cellular uptake, localization and phototoxicity of meta-tetra(hydroxyphenyl) chlorin encapsulated in surface-modified submicronic oil/water carriers in HT29 tumor cells.
    Bourdon O; Mosqueira V; Legrand P; Blais J
    J Photochem Photobiol B; 2000; 55(2-3):164-71. PubMed ID: 10942081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Labeling PLA-PEG nanocarriers with IR780: physical entrapment versus covalent attachment to polylactide.
    Machado MGC; Pound-Lana G; de Oliveira MA; Lanna EG; Fialho MCP; de Brito ACF; Barboza APM; Aguiar-Soares RDO; Mosqueira VCF
    Drug Deliv Transl Res; 2020 Dec; 10(6):1626-1643. PubMed ID: 32613549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of nanoparticles consisted of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) and their evaluation in vitro.
    Matsumoto J; Nakada Y; Sakurai K; Nakamura T; Takahashi Y
    Int J Pharm; 1999 Aug; 185(1):93-101. PubMed ID: 10425369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intranasal delivery of zidovudine by PLA and PLA-PEG blend nanoparticles.
    Mainardes RM; Khalil NM; Gremião MP
    Int J Pharm; 2010 Aug; 395(1-2):266-71. PubMed ID: 20580792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclosporine A Loaded Electrospun Poly(D,L-Lactic Acid)/Poly(Ethylene Glycol) Nanofibers: Drug Carriers Utilizable in Local Immunosuppression.
    Sirc J; Hampejsova Z; Trnovska J; Kozlik P; Hrib J; Hobzova R; Zajicova A; Holan V; Bosakova Z
    Pharm Res; 2017 Jul; 34(7):1391-1401. PubMed ID: 28405914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folate-conjugated amphiphilic star-shaped block copolymers as targeted nanocarriers.
    Zhu J; Zhou Z; Yang C; Kong D; Wan Y; Wang Z
    J Biomed Mater Res A; 2011 Jun; 97(4):498-508. PubMed ID: 21509931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a new poly(ethylene glycol)-graft-poly(D,L-lactic acid) as potential drug carriers.
    Pan J; Zhao M; Liu Y; Wang B; Mi L; Yang L
    J Biomed Mater Res A; 2009 Apr; 89(1):160-7. PubMed ID: 18431784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect.
    Zhan C; Gu B; Xie C; Li J; Liu Y; Lu W
    J Control Release; 2010 Apr; 143(1):136-42. PubMed ID: 20056123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of aqueous solubility of grafted moiety on the physicochemical properties of poly(d,l-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2010 Mar; 388(1-2):263-73. PubMed ID: 20060450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques.
    Elvassore N; Bertucco A; Caliceti P
    J Pharm Sci; 2001 Oct; 90(10):1628-36. PubMed ID: 11745721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide) and poly(ethylene glycol) microsphere blends.
    Jiang W; Schwendeman SP
    Pharm Res; 2001 Jun; 18(6):878-85. PubMed ID: 11474795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of biodegradable poly(l-lactide)/poly(ethylene glycol) microcapsules containing erythromycin by emulsion solvent evaporation technique.
    Park SJ; Kim SH
    J Colloid Interface Sci; 2004 Mar; 271(2):336-41. PubMed ID: 14972610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lychnopholide in Poly(d,l-Lactide)-
    Branquinho RT; de Mello CGC; Oliveira MT; Reis LES; Vieira PMA; Saúde-Guimarães DA; Mosqueira VCF; de Lana M
    Antimicrob Agents Chemother; 2020 Mar; 64(4):. PubMed ID: 31988096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.