These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 10614816)
61. Blood compatibility evaluations of poly(ethylene glycol)-poly(lactic acid) copolymers. Li C; Ma C; Zhang Y; Liu Z; Xue W J Biomater Appl; 2016 May; 30(10):1485-93. PubMed ID: 26980550 [TBL] [Abstract][Full Text] [Related]
62. In vitro macrophage uptake and in vivo biodistribution of long-circulation nanoparticles with poly(ethylene-glycol)-modified PLA (BAB type) triblock copolymer. Shan X; Liu C; Yuan Y; Xu F; Tao X; Sheng Y; Zhou H Colloids Surf B Biointerfaces; 2009 Sep; 72(2):303-11. PubMed ID: 19450955 [TBL] [Abstract][Full Text] [Related]
63. Amphotericin B-loaded poly(ethylene glycol)-poly(lactide) micelles: preparation, freeze-drying, and in vitro release. Yang ZL; Li XR; Yang KW; Liu Y J Biomed Mater Res A; 2008 May; 85(2):539-46. PubMed ID: 17729259 [TBL] [Abstract][Full Text] [Related]
64. Dodecanol-poly(D,L-lactic acid)-b-poly (ethylene glycol)-folate (Dol-PLA-PEG-FA) nanoparticles: evaluation of cell cytotoxicity and selecting capability in vitro. Wang S; Luo Y; Zeng S; Luo C; Yang L; Liang Z; Wang Y Colloids Surf B Biointerfaces; 2013 Feb; 102():130-5. PubMed ID: 23000678 [TBL] [Abstract][Full Text] [Related]
65. TAT Peptide-Conjugated Magnetic PLA-PEG Nanocapsules for the Targeted Delivery of Paclitaxel: In Vitro and Cell Studies. Koutsiouki K; Angelopoulou A; Ioannou E; Voulgari E; Sergides A; Magoulas GE; Bakandritsos A; Avgoustakis K AAPS PharmSciTech; 2017 Apr; 18(3):769-781. PubMed ID: 27301873 [TBL] [Abstract][Full Text] [Related]
66. Poly(D,L-lactic acid)-block-(ligand-tethered poly(ethylene glycol)) copolymers as surface additives for promoting chondrocyte attachment and growth. Yu G; Ji J; Zhu H; Shen J J Biomed Mater Res B Appl Biomater; 2006 Jan; 76(1):64-75. PubMed ID: 16130143 [TBL] [Abstract][Full Text] [Related]
67. Giant biocompatible and biodegradable PEG-PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets. Foster T; Dorfman KD; Davis HT J Colloid Interface Sci; 2010 Nov; 351(1):140-50. PubMed ID: 20627256 [TBL] [Abstract][Full Text] [Related]
68. Poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers control adhesion and osteoblastic differentiation of marrow stromal cells. Lieb E; Tessmar J; Hacker M; Fischbach C; Rose D; Blunk T; Mikos AG; Göpferich A; Schulz MB Tissue Eng; 2003 Feb; 9(1):71-84. PubMed ID: 12625956 [TBL] [Abstract][Full Text] [Related]
69. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. Bazile D; Prud'homme C; Bassoullet MT; Marlard M; Spenlehauer G; Veillard M J Pharm Sci; 1995 Apr; 84(4):493-8. PubMed ID: 7629743 [TBL] [Abstract][Full Text] [Related]
70. Synthesis and characterization of cholesterol-poly(ethylene glycol)-poly(D,L-lactic acid) copolymers for promoting osteoblast attachment and proliferation. Yu G; Ji J; Shen J J Mater Sci Mater Med; 2006 Oct; 17(10):899-909. PubMed ID: 16977387 [TBL] [Abstract][Full Text] [Related]
71. Development of a nanoparticle-based system for the delivery of retinoic acid into macrophages. Almouazen E; Bourgeois S; Boussaïd A; Valot P; Malleval C; Fessi H; Nataf S; Briançon S Int J Pharm; 2012 Jul; 430(1-2):207-15. PubMed ID: 22465633 [TBL] [Abstract][Full Text] [Related]
72. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. De Campos AM; Sánchez A; Gref R; Calvo P; Alonso MJ Eur J Pharm Sci; 2003 Sep; 20(1):73-81. PubMed ID: 13678795 [TBL] [Abstract][Full Text] [Related]
73. Stealth PEG-PHDCA niosomes: effects of chain length of PEG and particle size on niosomes surface properties, in vitro drug release, phagocytic uptake, in vivo pharmacokinetics and antitumor activity. Shi B; Fang C; Pei Y J Pharm Sci; 2006 Sep; 95(9):1873-87. PubMed ID: 16795003 [TBL] [Abstract][Full Text] [Related]
74. Effect of poly(ethylene glycol)-block-polylactide nanoparticles on hepatic cells of mouse: low cytotoxicity, but efflux of the nanoparticles by ATP-binding cassette transporters. Zhang Y; Hu Z; Ye M; Pan Y; Chen J; Luo Y; Zhang Y; He L; Wang J Eur J Pharm Biopharm; 2007 May; 66(2):268-80. PubMed ID: 17182234 [TBL] [Abstract][Full Text] [Related]
75. Nanoencapsulation and characterization of zidovudine on poly(L-lactide) and poly(L-lactide)-poly(ethylene glycol)-blend nanoparticles. Mainardes RM; Gremião MP J Nanosci Nanotechnol; 2012 Nov; 12(11):8513-21. PubMed ID: 23421238 [TBL] [Abstract][Full Text] [Related]
76. A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent. Xiong F; Hu K; Yu H; Zhou L; Song L; Zhang Y; Shan X; Liu J; Gu N Pharm Res; 2017 Aug; 34(8):1683-1692. PubMed ID: 28608138 [TBL] [Abstract][Full Text] [Related]
77. Targeted binding of PLA microparticles with lipid-PEG-tethered ligands. Duncanson WJ; Figa MA; Hallock K; Zalipsky S; Hamilton JA; Wong JY Biomaterials; 2007 Nov; 28(33):4991-9. PubMed ID: 17707503 [TBL] [Abstract][Full Text] [Related]
78. Fe(3)O(4) nanoparticles-loaded PEG-PLA polymeric vesicles as labels for ultrasensitive immunosensors. Wei Q; Li T; Wang G; Li H; Qian Z; Yang M Biomaterials; 2010 Oct; 31(28):7332-9. PubMed ID: 20619889 [TBL] [Abstract][Full Text] [Related]
79. In vivo Studies on Pharmacokinetics, Toxicity and Immunogenicity of Polyelectrolyte Nanocapsules Functionalized with Two Different Polymers: Poly-L-Glutamic Acid or PEG. Karabasz A; Szczepanowicz K; Cierniak A; Mezyk-Kopec R; Dyduch G; Szczęch M; Bereta J; Bzowska M Int J Nanomedicine; 2019; 14():9587-9602. PubMed ID: 31824153 [TBL] [Abstract][Full Text] [Related]
80. The internalization of fluorescence-labeled PLA nanoparticles by macrophages. Li F; Zhu A; Song X; Ji L; Wang J Int J Pharm; 2013 Sep; 453(2):506-13. PubMed ID: 23806816 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]