These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 10614816)
81. Upconversion luminescence tracking of gene delivery via multifunctional nanocapsules. Bai X; Xu S; Liu J; Wang L Talanta; 2016 Apr; 150():118-24. PubMed ID: 26838389 [TBL] [Abstract][Full Text] [Related]
82. The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells. Tong R; Yala L; Fan TM; Cheng J Biomaterials; 2010 Apr; 31(11):3043-53. PubMed ID: 20122727 [TBL] [Abstract][Full Text] [Related]
83. A bioresorbable, polylactide reservoir for diffusional and osmotically controlled drug delivery. Jonnalagadda S; Robinson DH AAPS PharmSciTech; 2000 Oct; 1(4):E29. PubMed ID: 14727894 [TBL] [Abstract][Full Text] [Related]
84. Photodynamic therapy with the dual-mode association of IR780 to PEG-PLA nanocapsules and the effects on human breast cancer cells. Machado MGC; de Oliveira MA; Lanna EG; Siqueira RP; Pound-Lana G; Branquinho RT; Mosqueira VCF Biomed Pharmacother; 2022 Jan; 145():112464. PubMed ID: 34864313 [TBL] [Abstract][Full Text] [Related]
85. Fabrication of biodegradable PEG-PLA nanospheres for solubility, stabilization, and delivery of curcumin. Liang H; Friedman JM; Nacharaju P Artif Cells Nanomed Biotechnol; 2017 Mar; 45(2):297-304. PubMed ID: 26924283 [TBL] [Abstract][Full Text] [Related]
86. Thicker Lamellae and Higher Crystallinity of Poly(lactic acid) via Applying Shear Flow and Pressure and Adding Poly(ethylene Glycol). Ru JF; Yang SG; Lei J; Li ZM J Phys Chem B; 2017 Jun; 121(23):5842-5852. PubMed ID: 28511007 [TBL] [Abstract][Full Text] [Related]
87. Bulk and surface modifications of polylactide. Wang S; Cui W; Bei J Anal Bioanal Chem; 2005 Feb; 381(3):547-56. PubMed ID: 15672238 [TBL] [Abstract][Full Text] [Related]
88. Interactions between poly(ethylene glycol) and protein in dichloromethane/water emulsions. 2. Conditions required to obtain spontaneous emulsification allowing the formation of bioresorbable poly(D,L lactic acid) microparticles. Malzert-Fréon A; Schönhammer K; Benoît JP; Boury F Eur J Pharm Biopharm; 2009 Sep; 73(1):66-73. PubMed ID: 19427379 [TBL] [Abstract][Full Text] [Related]
89. Analysis of polyethylene-glycol-polylactide nano-dimension artificial red blood cells in maintaining systemic hemoglobin levels and prevention of methemoglobin formation. Chang TM; Powanda D; Yu WP Artif Cells Blood Substit Immobil Biotechnol; 2003 Aug; 31(3):231-47. PubMed ID: 12906306 [TBL] [Abstract][Full Text] [Related]
90. Poloxamer-Decorated Polymer Nanoparticles for Lung Surfactant Compatibility. Beck-Broichsitter M; Bohr A; Ruge CA Mol Pharm; 2017 Oct; 14(10):3464-3472. PubMed ID: 28813610 [TBL] [Abstract][Full Text] [Related]
91. Description of D-glucosamine immobilization kinetics onto poly(lactic acid) surface via a multistep physicochemical approach for preparation of novel active biomaterials. Swilem AE; Lehocký M; Humpolíček P; Kucekova Z; Novák I; Mičušík M; Abd El-Rehim HA; Hegazy EA; Hamed AA; Kousal J J Biomed Mater Res A; 2017 Nov; 105(11):3176-3188. PubMed ID: 28707422 [TBL] [Abstract][Full Text] [Related]
92. Polyester-poly(ethylene glycol) nanoparticles loaded with the pure antiestrogen RU 58668: physicochemical and opsonization properties. Ameller T; Marsaud V; Legrand P; Gref R; Barratt G; Renoir JM Pharm Res; 2003 Jul; 20(7):1063-70. PubMed ID: 12880293 [TBL] [Abstract][Full Text] [Related]
93. Formulation and lyoprotection of poly(lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. De Jaeghere F; Allémann E; Leroux JC; Stevels W; Feijen J; Doelker E; Gurny R Pharm Res; 1999 Jun; 16(6):859-66. PubMed ID: 10397606 [TBL] [Abstract][Full Text] [Related]
94. PEGylated and functionalized polylactide-based nanocapsules: An overview. de Oliveira MA; Araújo RS; Mosqueira VCF Int J Pharm; 2023 Apr; 636():122760. PubMed ID: 36858134 [TBL] [Abstract][Full Text] [Related]
95. Response of macrophages to poly(L-lactide) particulates which have undergone various degrees of artificial degradation. Dawes E; Rushton N Biomaterials; 1997 Dec; 18(24):1615-23. PubMed ID: 9613809 [TBL] [Abstract][Full Text] [Related]
96. Synthesis and characterisation of a degradable poly(lactic acid)-poly(ethylene glycol) copolymer with biotinylated end groups. Salem AK; Cannizzaro SM; Davies MC; Tendler SJ; Roberts CJ; Williams PM; Shakesheff KM Biomacromolecules; 2001; 2(2):575-80. PubMed ID: 11749223 [TBL] [Abstract][Full Text] [Related]
97. PLA-PEG forming worm-like nanoparticles despite unfavorable packing parameter: Formation mechanism, thermal stability and potential for cell internalization. Robin B; Mousnier L; Lê H; Grabowski N; Chapron D; Bellance-Mina O; Huang N; Agnely F; Fattal E; Tsapis N Int J Pharm; 2023 Aug; 643():123263. PubMed ID: 37482230 [TBL] [Abstract][Full Text] [Related]
98. Plasticization of poly(L-lactide) with poly(propylene glycol). Kulinski Z; Piorkowska E; Gadzinowska K; Stasiak M Biomacromolecules; 2006 Jul; 7(7):2128-35. PubMed ID: 16827579 [TBL] [Abstract][Full Text] [Related]
99. Effect of polyethylene glycol coatings on uptake of indocyanine green loaded nanocapsules by human spleen macrophages in vitro. Bahmani B; Gupta S; Upadhyayula S; Vullev VI; Anvari B J Biomed Opt; 2011 May; 16(5):051303. PubMed ID: 21639563 [TBL] [Abstract][Full Text] [Related]