These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10614927)

  • 1. Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects.
    James K; Levene H; Parsons JR; Kohn J
    Biomaterials; 1999 Dec; 20(23-24):2203-12. PubMed ID: 10614927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of poly(DTH carbonate), a tyrosine-derived degradable polymer, for orthopedic applications.
    Ertel SI; Kohn J; Zimmerman MC; Parsons JR
    J Biomed Mater Res; 1995 Nov; 29(11):1337-48. PubMed ID: 8582902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.
    Hooper KA; Macon ND; Kohn J
    J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Canine bone response to tyrosine-derived polycarbonates and poly(L-lactic acid).
    Choueka J; Charvet JL; Koval KJ; Alexander H; James KS; Hooper KA; Kohn J
    J Biomed Mater Res; 1996 May; 31(1):35-41. PubMed ID: 8731147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds.
    Tangpasuthadol V; Pendharkar SM; Kohn J
    Biomaterials; 2000 Dec; 21(23):2371-8. PubMed ID: 11055284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices.
    Tangpasuthadol V; Pendharkar SM; Peterson RC; Kohn J
    Biomaterials; 2000 Dec; 21(23):2379-87. PubMed ID: 11055285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo degradation of poly(DTE carbonate) membranes. Analysis of the tissue reactions and mechanical properties.
    Asikainen AJ; Pelto M; Noponen J; Kellomäki M; Pihlajamäki H; Lindqvist C; Suuronen R
    J Mater Sci Mater Med; 2008 Jan; 19(1):53-8. PubMed ID: 17577638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fixation of distal femoral osteotomies with self-reinforced polymer/bioactive glass rods: an experimental study on rabbits.
    Pyhältö T; Lapinsuo M; Pätiälä H; Pelto M; Törmälä P; Rokkanen P
    Biomaterials; 2005 Feb; 26(6):645-54. PubMed ID: 15282142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone attachment to hydroxyapatite coated polymers.
    Boone PS; Zimmerman MC; Gutteling E; Lee CK; Parsons JR; Langrana N
    J Biomed Mater Res; 1989 Aug; 23(A2 Suppl):183-99. PubMed ID: 2674147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of variables influencing implant fixation by direct bone apposition.
    Thomas KA; Cook SD
    J Biomed Mater Res; 1985 Oct; 19(8):875-901. PubMed ID: 3880349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue compatibility of tyrosine-derived polycarbonates and polyiminocarbonates: an initial evaluation.
    Silver FH; Marks M; Kato YP; Li C; Pulapura S; Kohn J
    J Long Term Eff Med Implants; 1992; 1(4):329-46. PubMed ID: 10171118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials.
    Ertel SI; Kohn J
    J Biomed Mater Res; 1994 Aug; 28(8):919-30. PubMed ID: 7983090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo.
    Wang P; Liu P; Peng H; Luo X; Yuan H; Zhang J; Yan Y
    J Biomater Sci Polym Ed; 2016 Aug; 27(11):1170-86. PubMed ID: 27126299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of copolymer composition of polylactide implants on cranial bone regeneration.
    Leiggener CS; Curtis R; Müller AA; Pfluger D; Gogolewski S; Rahn BA
    Biomaterials; 2006 Jan; 27(2):202-7. PubMed ID: 16026823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone response to degradable thermoplastic composite in rabbits.
    Närhi TO; Jansen JA; Jaakkola T; de Ruijter A; Rich J; Seppälä J; Yli-Urpo A
    Biomaterials; 2003 May; 24(10):1697-704. PubMed ID: 12593950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive glass fiber/polymeric composites bond to bone tissue.
    Marcolongo M; Ducheyne P; Garino J; Schepers E
    J Biomed Mater Res; 1998 Jan; 39(1):161-70. PubMed ID: 9429107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of poly DL-lactide--co-glycolide implants and xenogeneic bone matrix-derived growth factors on calvarial bone repair in the rabbit.
    Meikle MC; Papaioannou S; Ratledge TJ; Speight PM; Watt-Smith SR; Hill PA; Reynolds JJ
    Biomaterials; 1994 Jun; 15(7):513-21. PubMed ID: 7918904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The study of water uptake in degradable polymers by thermally stimulated depolarization currents.
    Suárez N; Brocchini S; Kohn J
    Biomaterials; 1998 Dec; 19(24):2347-56. PubMed ID: 9884049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials. Part II: study of inverse temperature transitions.
    Yu C; Mielewczyk SS; Breslauer KJ; Kohn J
    Biomaterials; 1999 Feb; 20(3):265-72. PubMed ID: 10030603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials. Part I: synthesis and evaluation.
    Yu C; Kohn J
    Biomaterials; 1999 Feb; 20(3):253-64. PubMed ID: 10030602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.