These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10614927)

  • 21. Mechanically stable implants of synthetic bone mineral by cold isostatic pressing.
    Tadic D; Epple M
    Biomaterials; 2003 Nov; 24(25):4565-71. PubMed ID: 12950999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels.
    Shin H; Quinten Ruhé P; Mikos AG; Jansen JA
    Biomaterials; 2003 Aug; 24(19):3201-11. PubMed ID: 12763447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preliminary investigation of bioactivity of nano biocomposite.
    Jie W; Hua H; Lan W; Yi H; Yubao L
    J Mater Sci Mater Med; 2007 Mar; 18(3):529-33. PubMed ID: 17334705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural composite of wood as replacement material for ostechondral bone defects.
    Aho AJ; Rekola J; Matinlinna J; Gunn J; Tirri T; Viitaniemi P; Vallittu P
    J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):64-71. PubMed ID: 17318823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorocarbon chain end-capped poly(carbonate urethane)s as biomaterials: blood compatibility and chemical stability assessments.
    Xie X; Wang R; Li J; Luo L; Wen D; Zhong Y; Zhao C
    J Biomed Mater Res B Appl Biomater; 2009 Apr; 89(1):223-41. PubMed ID: 18837450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subcutaneous tissue response to titanium, poly(ε-caprolactone), and carbonate-substituted hydroxyapatite-coated poly(ε-caprolactone) plates: a rabbit study.
    Chanchareonsook N; Tideman H; Feinberg SE; Hollister SJ; Jongpaiboonkit L; Kin L; Jansen JA
    J Biomed Mater Res A; 2013 Aug; 101(8):2258-66. PubMed ID: 23349120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium phosphate/poly(D,L-lactic-co-glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat critical-sized cranial defect.
    van de Watering FCJ; van den Beucken JJJP; Walboomers XF; Jansen JA
    Clin Oral Implants Res; 2012 Feb; 23(2):151-159. PubMed ID: 21631594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma.
    Beutel BG; Danna NR; Gangolli R; Granato R; Manne L; Tovar N; Coelho PG
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():484-90. PubMed ID: 25491854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Progress of in vivo study on degradable magnesium alloys application as bone-implant materials].
    Qi Z; Zhang Q; Yin Y; Wang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Nov; 26(11):1381-6. PubMed ID: 23230677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A strut graft substitute consisting of a metal core and a polymer surface.
    Lagoa AL; Wedemeyer C; von Knoch M; Löer F; Epple M
    J Mater Sci Mater Med; 2008 Jan; 19(1):417-24. PubMed ID: 17607522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal properties and physical ageing behaviour of tyrosine-derived polycarbonates.
    Tangpasuthadol V; Shefer A; Hooper KA; Kohn J
    Biomaterials; 1996 Feb; 17(4):463-8. PubMed ID: 8938243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials.
    Dai Z; Li Y; Lu W; Jiang D; Li H; Yan Y; Lv G; Yang A
    Int J Nanomedicine; 2015; 10():6303-16. PubMed ID: 26504382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical and bone ingrowth properties of a polymer-coated, porous, synthetic, coralline hydroxyapatite bone-graft material.
    Tencer AF; Woodard PL; Swenson J; Brown KL
    Ann N Y Acad Sci; 1988; 523():157-72. PubMed ID: 2898222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradable polymers. I. Synthesis of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(8):511-20. PubMed ID: 1633224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material.
    Meechaisue C; Dubin R; Supaphol P; Hoven VP; Kohn J
    J Biomater Sci Polym Ed; 2006; 17(9):1039-56. PubMed ID: 17094641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation and swelling issues of poly-(d,l-lactide)/β-tricalcium phosphate/calcium carbonate composites for bone replacement.
    Abert J; Amella A; Weigelt S; Fischer H
    J Mech Behav Biomed Mater; 2016 Feb; 54():82-92. PubMed ID: 26433089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responses in vivo to purified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) implanted in a murine tibial defect model.
    Wu CA; Pettit AR; Toulson S; Grøndahl L; Mackie EJ; Cassady AI
    J Biomed Mater Res A; 2009 Dec; 91(3):845-54. PubMed ID: 19065568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes.
    Gorna K; Gogolewski S
    J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.