BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10615039)

  • 1. A nucleation site and mechanism leading to epitaxial growth of diamond films.
    Lee ST; Peng HY; Zhou XT; Wang N; Lee CS; Bello I; Lifshitz Y
    Science; 2000 Jan; 287(5450):104-6. PubMed ID: 10615039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial study of cubic boron nitride films deposited on diamond.
    Zhang WJ; Meng XM; Chan CY; Chan KM; Wu Y; Bello I; Lee ST
    J Phys Chem B; 2005 Aug; 109(33):16005-10. PubMed ID: 16853031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films.
    Fan LS; Constantin L; Li DW; Liu L; Keramatnejad K; Azina C; Huang X; Golgir HR; Lu Y; Ahmadi Z; Wang F; Shield J; Cui B; Silvain JF; Lu YF
    Light Sci Appl; 2018; 7():17177. PubMed ID: 30839522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Nucleation of Diamond Films.
    Mandal S; Thomas EL; Jenny TA; Williams OA
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26220-26225. PubMed ID: 27626953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grain-size-dependent diamond-nondiamond composite films: characterization and field-emission properties.
    Pradhan D; Lin IN
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1444-50. PubMed ID: 20355947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleation of diamond films on heterogeneous substrates: a review.
    Mandal S
    RSC Adv; 2021 Mar; 11(17):10159-10182. PubMed ID: 35423515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heteroepitaxial diamond growth on 4H-SiC using microwave plasma chemical vapor deposition.
    Moore E; Jarrell J; Cao L
    Heliyon; 2017 Sep; 3(9):e00404. PubMed ID: 28971149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epitaxy of cubic boron nitride on (001)-oriented diamond.
    Zhang XW; Boyen HG; Deyneka N; Ziemann P; Banhart F; Schreck M
    Nat Mater; 2003 May; 2(5):312-5. PubMed ID: 12692532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of diamond nucleation and growth from energetic species.
    Lifshitz Y; Meng XM; Lee ST; Akhveldiany R; Hoffman A
    Phys Rev Lett; 2004 Jul; 93(5):056101. PubMed ID: 15323713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers.
    Schreck M; Gsell S; Brescia R; Fischer M
    Sci Rep; 2017 Mar; 7():44462. PubMed ID: 28294167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced nucleation of diamond on three dimensional tools via stabilized colloidal nanodiamond in electrostatic self-assembly seeding process.
    Wang T; Handschuh-Wang S; Zhang S; Zhou X; Tang Y
    J Colloid Interface Sci; 2017 Nov; 506():543-552. PubMed ID: 28756321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.
    Stehlik S; Varga M; Stenclova P; Ondic L; Ledinsky M; Pangrac J; Vanek O; Lipov J; Kromka A; Rezek B
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38842-38853. PubMed ID: 29028298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deposition of hydrogenated silicon clusters for efficient epitaxial growth.
    Le HT; Jardali F; Vach H
    Phys Chem Chem Phys; 2018 Jun; 20(23):15626-15634. PubMed ID: 29671430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles.
    Lee SK; Kim JH; Jeong MG; Song MJ; Lim DS
    Nanotechnology; 2010 Dec; 21(50):505302. PubMed ID: 21098933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High velocity SAW using aluminum nitride film on unpolished nucleation side of free-standing CVD diamond.
    Elmazria O; Mortet V; El Hakiki M; Nesladek M; Alnot P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun; 50(6):710-5. PubMed ID: 12839183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deposition of Diamond Films in a Closed Hot Filament CVD System.
    Lai GR; Farabaugh EN; Feldman A; Robins LH
    J Res Natl Inst Stand Technol; 1995; 100(1):43-49. PubMed ID: 29151726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of GaN and Diamond Using Epitaxial Lateral Overgrowth.
    Ahmed R; Siddique A; Anderson J; Gautam C; Holtz M; Piner E
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39397-39404. PubMed ID: 32805930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic Ellipsometry of Nanocrystalline Diamond Film Growth.
    Thomas ELH; Mandal S; Ashek-I-Ahmed ; Macdonald JE; Dane TG; Rawle J; Cheng CL; Williams OA
    ACS Omega; 2017 Oct; 2(10):6715-6727. PubMed ID: 31457263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycrystalline CVD Diamond Films with High Electrical Mobility.
    Plano MA; Landstrass MI; Pan LS; Han S; Kania DR; McWilliams S; Ager JW
    Science; 1993 May; 260(5112):1310-2. PubMed ID: 17755424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.
    Cheng Z; Bougher T; Bai T; Wang SY; Li C; Yates L; Foley BM; Goorsky M; Cola BA; Faili F; Graham S
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4808-4815. PubMed ID: 29328632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.