BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 10615492)

  • 1. Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: evidence for precocious magnocellular development?
    Dobkins KR; Anderson CM; Lia B
    Vision Res; 1999 Sep; 39(19):3223-39. PubMed ID: 10615492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infant color vision: temporal contrast sensitivity functions for chromatic (red/green) stimuli in 3-month-olds.
    Dobkins KR; Lia B; Teller DY
    Vision Res; 1997 Oct; 37(19):2699-716. PubMed ID: 9373669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatic and luminance contrast sensitivities in asymptomatic carriers from a large Brazilian pedigree of 11778 Leber hereditary optic neuropathy.
    Ventura DF; Quiros P; Carelli V; Salomão SR; Gualtieri M; Oliveira AG; Costa MF; Berezovsky A; Sadun F; de Negri AM; Sadun AA
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4809-14. PubMed ID: 16303983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial frequency tuned covariance channels for red-green and luminance-modulated gratings: psychophysical data from human infants.
    Peterzell DH; Chang SK; Teller DY
    Vision Res; 2000; 40(4):431-44. PubMed ID: 10820623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the temporal properties of visual evoked potentials to luminance and colour contrast in infants.
    Morrone MC; Fiorentini A; Burr DC
    Vision Res; 1996 Oct; 36(19):3141-55. PubMed ID: 8917775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis.
    Porciatti V; Sartucci F
    Brain; 1996 Jun; 119 ( Pt 3)():723-40. PubMed ID: 8673486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker.
    Lee BB; Martin PR; Valberg A
    J Physiol; 1989 Jul; 414():223-43. PubMed ID: 2607430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling spatial contrast sensitivity functions for chromatic and luminance-modulated gratings.
    Rovamo JM; Kankaanpää MI; Kukkonen H
    Vision Res; 1999 Jul; 39(14):2387-98. PubMed ID: 10367059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers.
    Lee BB; Pokorny J; Smith VC; Martin PR; Valberg A
    J Opt Soc Am A; 1990 Dec; 7(12):2223-36. PubMed ID: 2090801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Motion-on-Color Paradigm for Isolating Magnocellular Pathway Function in Preperimetric Glaucoma.
    Wen W; Zhang P; Liu T; Zhang T; Gao J; Sun X; He S
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4439-46. PubMed ID: 26193920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Pattern of Retinal Ganglion Cell Loss in OPA1-Related Autosomal Dominant Optic Atrophy Inferred From Temporal, Spatial, and Chromatic Sensitivity Losses.
    Majander A; João C; Rider AT; Henning GB; Votruba M; Moore AT; Yu-Wai-Man P; Stockman A
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):502-516. PubMed ID: 28125838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatic and achromatic vision of macaques: role of the P pathway.
    Merigan WH
    J Neurosci; 1989 Mar; 9(3):776-83. PubMed ID: 2926482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial frequency tuned covariance channels for red-green and luminance-modulated gratings: psychophysical data from human adults.
    Peterzell DH; Teller DY
    Vision Res; 2000; 40(4):417-30. PubMed ID: 10820622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infant color vision: moving tritan stimuli do not elicit directionally appropriate eye movements in 2- and 4-month-olds.
    Teller DY; Brooks TE; Palmer J
    Vision Res; 1997 Apr; 37(7):899-911. PubMed ID: 9156187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural adjustments to chromatic blur.
    Webster MA; Mizokami Y; Svec LA; Elliott SL
    Spat Vis; 2006; 19(2-4):111-32. PubMed ID: 16862835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting and discriminating the direction of motion of luminance and colour gratings.
    Derrington AM; Henning GB
    Vision Res; 1993; 33(5-6):799-811. PubMed ID: 8351851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infant luminance and chromatic contrast sensitivity: optokinetic nystagmus data on 3-month-olds.
    Brown AM; Lindsey DT; McSweeney EM; Walters MM
    Vision Res; 1995 Nov; 35(22):3145-60. PubMed ID: 8533349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infant temporal contrast sensitivity at low temporal frequencies.
    Teller DY; Lindsey DT; Mar CM; Succop A; Mahal MR
    Vision Res; 1992 Jun; 32(6):1157-62. PubMed ID: 1509707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Misperceptions of speed for chromatic and luminance grating stimuli.
    Burton MP; McKeefry DJ
    Vision Res; 2007 May; 47(11):1504-17. PubMed ID: 17395238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: an fMRI study.
    Mullen KT; Thompson B; Hess RF
    J Vis; 2010 Nov; 10(13):13. PubMed ID: 21106678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.