These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 10615687)

  • 1. Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1.
    Mauermann M; Uppenkamp S; van Hengel PW; Kollmeier B
    J Acoust Soc Am; 1999 Dec; 106(6):3473-83. PubMed ID: 10615687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study.
    Knight RD; Kemp DT
    J Acoust Soc Am; 2000 Jan; 107(1):457-73. PubMed ID: 10641654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. II. Fine structure for different shapes of cochlear hearing loss.
    Mauermann M; Uppenkamp S; van Hengel PW; Kollmeier B
    J Acoust Soc Am; 1999 Dec; 106(6):3484-91. PubMed ID: 10615688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism for bandpass frequency characteristic in distortion product otoacoustic emission generation.
    Fahey PF; Stagner BB; Martin GK
    J Acoust Soc Am; 2006 Feb; 119(2):991-6. PubMed ID: 16521760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. I. Intersubject variability and consequences on the DPOAE-gram.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1460-70. PubMed ID: 10738801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
    Johnson TA; Baranowski LG
    Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave and place fixed DPOAE maps of the human ear.
    Knight RD; Kemp DT
    J Acoust Soc Am; 2001 Apr; 109(4):1513-25. PubMed ID: 11325123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates.
    Abdala C
    J Acoust Soc Am; 1996 Dec; 100(6):3726-40. PubMed ID: 8969474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the 2f
    Wen H; Bowling T; Meaud J
    Hear Res; 2018 Aug; 365():127-140. PubMed ID: 29801982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of the bell-like dependence of the DPOAE amplitude on primary frequency ratio.
    Lukashkin AN; Russell IJ
    J Acoust Soc Am; 2001 Dec; 110(6):3097-106. PubMed ID: 11785811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Optimal Stimulus Frequency Ratio for Measurement of the Quadratic f2-f1 Distortion Product Otoacoustic Emission in Humans.
    Baiduc RR; Dhar S
    J Speech Lang Hear Res; 2018 Jul; 61(7):1794-1806. PubMed ID: 29946695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sources of distortion product otoacoustic emissions revealed by suppression experiments and inverse fast Fourier transforms in normal ears.
    Konrad-Martin D; Neely ST; Keefe DH; Dorn PA; Gorga MP
    J Acoust Soc Am; 2001 Jun; 109(6):2862-79. PubMed ID: 11425129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Group delays of distortion product otoacoustic emissions: relating delays measured with f1- and f2-sweep paradigms.
    Prijs VF; Schneider S; Schoonhoven R
    J Acoust Soc Am; 2000 Jun; 107(6):3298-307. PubMed ID: 10875375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine structure of distortion product otoacoustic emissions: its dependence on age and hearing threshold and clinical implications.
    Wagner W; Plinkert PK; Vonthein R; Plontke SK
    Eur Arch Otorhinolaryngol; 2008 Oct; 265(10):1165-72. PubMed ID: 18301908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distortion product otoacoustic emission (DPOAE) input/output functions and the influence of the second DPOAE source.
    Mauermann M; Kollmeier B
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2199-212. PubMed ID: 15532652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ["Single generator distortion products"(sgDPOAE). Precise measurements of distortion product otoacoustic emissions by three-tone stimulations].
    Plinkert PK; Heitmann J; Waldmann B
    HNO; 1997 Nov; 45(11):909-14. PubMed ID: 9476103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of generation of the 2f2-f1 distortion product otoacoustic emission in humans.
    Wilson HK; Lutman ME
    J Acoust Soc Am; 2006 Oct; 120(4):2108-15. PubMed ID: 17069308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicomponent acoustic distortion product otoacoustic emission phase in humans. II. Implications for distortion product otoacoustic emissions generation.
    Moulin A; Kemp DT
    J Acoust Soc Am; 1996 Sep; 100(3):1640-62. PubMed ID: 8817892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.