These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 10615704)

  • 1. Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment.
    Wear KA
    J Acoust Soc Am; 1999 Dec; 106(6):3659-64. PubMed ID: 10615704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of dependence of backscatter coefficient from cylinders on frequency and diameter using focused transducers--with applications in trabecular bone.
    Wear KA
    J Acoust Soc Am; 2004 Jan; 115(1):66-72. PubMed ID: 14758996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: theoretical and experimental results.
    Wear KA; Laib A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Aug; 50(8):979-86. PubMed ID: 12952089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic characterization of human trabecular bone microstructure.
    Hakulinen MA; Day JS; Töyräs J; Weinans H; Jurvelin JS
    Phys Med Biol; 2006 Mar; 51(6):1633-48. PubMed ID: 16510968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of marrow on the high frequency ultrasonic properties of cancellous bone.
    Hoffmeister BK; Auwarter JA; Rho JY
    Phys Med Biol; 2002 Sep; 47(18):3419-27. PubMed ID: 12375829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model.
    Jenson F; Padilla F; Laugier P
    Ultrasound Med Biol; 2003 Mar; 29(3):455-64. PubMed ID: 12706197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistics of the envelope of ultrasonic backscatter from human trabecular bone.
    Litniewski J; Cieslik L; Wojcik J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):2224-32. PubMed ID: 21973377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic scattering from cancellous bone: a review.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1432-41. PubMed ID: 18986932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropy of ultrasonic backscatter and attenuation from human calcaneus: implications for relative roles of absorption and scattering in determining attenuation.
    Wear KA
    J Acoust Soc Am; 2000 Jun; 107(6):3474-9. PubMed ID: 10875391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of trabecular thickness using ultrasonic backcatter.
    Padilla F; Jenson F; Laugier P
    Ultrason Imaging; 2006 Jan; 28(1):3-22. PubMed ID: 16924879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of ultrasonic scattering in human cancellous bone by using a binary mixture model.
    Guo X; Zhang D; Gong X
    Phys Med Biol; 2007 Jan; 52(1):29-40. PubMed ID: 17183126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results.
    Chaffaï S; Roberjot V; Peyrin F; Berger G; Laugier P
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2403-11. PubMed ID: 11108380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamental precision limitations for measurements of frequency dependence of backscatter: applications in tissue-mimicking phantoms and trabecular bone.
    Wear KA
    J Acoust Soc Am; 2001 Dec; 110(6):3275-82. PubMed ID: 11785828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and analysis of multiple scattering of acoustic waves in complex media: application to the trabecular bone.
    Wojcik J; Litniewski J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):1908-18. PubMed ID: 21973345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of dense bovine cancellous bone tissue microstructure by ultrasonic backscattering using weak scattering models.
    Deligianni DD; Apostolopoulos KN
    J Acoust Soc Am; 2007 Aug; 122(2):1180-90. PubMed ID: 17672664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scattering in Cancellous Bone.
    Wear K
    Adv Exp Med Biol; 2022; 1364():163-175. PubMed ID: 35508875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency dependence of apparent ultrasonic backscatter from human cancellous bone.
    Hoffmeister BK
    Phys Med Biol; 2011 Feb; 56(3):667-83. PubMed ID: 21220842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz.
    Wear KA; Stiles TA; Frank GR; Madsen EL; Cheng F; Feleppa EJ; Hall CS; Kim BS; Lee P; O'Brien WD; Oelze ML; Raju BI; Shung KK; Wilson TA; Yuan JR
    J Ultrasound Med; 2005 Sep; 24(9):1235-50. PubMed ID: 16123184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependences of ultrasonic properties on frequency and trabecular spacing in trabecular-bone-mimicking phantoms.
    Lee KI
    J Acoust Soc Am; 2015 Feb; 137(2):EL194-9. PubMed ID: 25698050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone.
    Hoffmeister BK; Holt AP; Kaste SC
    Phys Med Biol; 2011 Oct; 56(19):6243-55. PubMed ID: 21896966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.