These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 10616063)

  • 1. Lateral lumbar interbody fusion using a cellular allogeneic bone matrix in the treatment of symptomatic degenerative lumbar disc disease and lumbar spinal instability.
    Tally WC; Temple HT; Burkus JK
    J Spine Surg; 2021 Sep; 7(3):310-317. PubMed ID: 34734135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Georg Schmorl Prize of the German Spine Society (DWG) 2020: new biomechanical in vitro test method to determine subsidence risk of vertebral body replacements.
    Zengerle L; Fleege C; Di Pauli von Treuheim T; Vogele D; Rauschmann M; Wilke HJ
    Eur Spine J; 2021 May; 30(5):1117-1124. PubMed ID: 33730216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can cavity-based pedicle screw augmentation decrease screw loosening? A biomechanical in vitro study.
    Riesner HJ; Blattert TR; Krezdorn R; Schädler S; Wilke HJ
    Eur Spine J; 2021 Aug; 30(8):2283-2291. PubMed ID: 33355707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Intervertebral cages from a biomechanical point of view].
    Schmoelz W; Keiler A
    Orthopade; 2015 Feb; 44(2):132-7. PubMed ID: 25595216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stand-alone ALIF with integrated intracorporeal anchoring plates in the treatment of degenerative lumbar disc disease: a prospective study on 65 cases.
    Allain J; Delecrin J; Beaurain J; Poignard A; Vila T; Flouzat-Lachaniette CH
    Eur Spine J; 2014 Oct; 23(10):2136-43. PubMed ID: 24952630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical comparison of three stand-alone lumbar cages--a three-dimensional finite element analysis.
    Chen SH; Chiang MC; Lin JF; Lin SC; Hung CH
    BMC Musculoskelet Disord; 2013 Oct; 14():281. PubMed ID: 24088294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anterior lumbar interbody fusion with stand-alone interbody cage in treatment of lumbar intervertebral foraminal stenosis : comparative study of two different types of cages.
    Cho CB; Ryu KS; Park CK
    J Korean Neurosurg Soc; 2010 May; 47(5):352-7. PubMed ID: 20539794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques - a three-dimensional finite element analysis.
    Chen SH; Tai CL; Lin CY; Hsieh PH; Chen WP
    BMC Musculoskelet Disord; 2008 Jun; 9():88. PubMed ID: 18559117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The distribution of mineral density in the cervical vertebral endplates.
    Müller-Gerbl M; Weißer S; Linsenmeier U
    Eur Spine J; 2008 Mar; 17(3):432-438. PubMed ID: 18193299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biodegradable cage. Osteointegration in spondylodesis of the sheep cervical spine].
    Pflugmacher R; Eindorf T; Scholz M; Gumnior S; Krall C; Schleicher P; Haas NP; Kandziora F
    Chirurg; 2004 Oct; 75(10):1003-12. PubMed ID: 15146281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Vertebral body replacement in spine surgery].
    Kandziora F; Schnake KJ; Klostermann CK; Haas NP
    Unfallchirurg; 2004 May; 107(5):354-71. PubMed ID: 15138640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis.
    Polikeit A; Ferguson SJ; Nolte LP; Orr TE
    Eur Spine J; 2003 Aug; 12(4):413-20. PubMed ID: 12955610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of the endplate for interbody cages in the lumbar spine.
    Polikeit A; Ferguson SJ; Nolte LP; Orr TE
    Eur Spine J; 2003 Dec; 12(6):556-61. PubMed ID: 12783287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading.
    Kettler A; Wilke HJ; Dietl R; Krammer M; Lumenta C; Claes L
    J Neurosurg; 2000 Jan; 92(1 Suppl):87-92. PubMed ID: 10616063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dislocation tendency, stabilizing effect and sintering tendency of different lumbar vertebrae cages in an in vitro experiment].
    Kettler A; Dietl R; Krammer M; Lumenta CB; Claes L; Wilke HJ
    Orthopade; 2002 May; 31(5):481-7. PubMed ID: 12089798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro stabilizing effect of a transforaminal compared with two posterior lumbar interbody fusion cages.
    Kettler A; Schmoelz W; Kast E; Gottwald M; Claes L; Wilke HJ
    Spine (Phila Pa 1976); 2005 Nov; 30(22):E665-70. PubMed ID: 16284577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive preload improves the stability of anterior lumbar interbody fusion cage constructs.
    Patwardhan AG; Carandang G; Ghanayem AJ; Havey RM; Cunningham B; Voronov LI; Phillips FM
    J Bone Joint Surg Am; 2003 Sep; 85(9):1749-56. PubMed ID: 12954834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MIS Expandable Interbody Spacers: A Literature Review and Biomechanical Comparison of an Expandable MIS TLIF With Conventional TLIF and ALIF.
    Cannestra AF; Peterson MD; Parker SR; Roush TF; Bundy JV; Turner AW
    Spine (Phila Pa 1976); 2016 Apr; 41 Suppl 8():S44-9. PubMed ID: 26825792
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.