BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 10616088)

  • 1. Cerebral hemorrhage and edema following brain biopsy in rats: significance of mean arterial blood pressure.
    Benveniste H; Kim KR; Hedlund LW; Kim JW; Friedman AH
    J Neurosurg; 2000 Jan; 92(1):100-7. PubMed ID: 10616088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between serum IL-1beta levels and cerebral edema extent in a hypertensive intracerebral hemorrhage rat model.
    Wei P; You C; Jin H; Chen H; Lin B
    Neurol Res; 2014 Feb; 36(2):170-5. PubMed ID: 24410061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dipeptidyl peptidase iv inhibition on arterial blood pressure.
    Jackson EK; Dubinion JH; Mi Z
    Clin Exp Pharmacol Physiol; 2008 Jan; 35(1):29-34. PubMed ID: 18047624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced venoconstrictor reserve in spontaneously hypertensive rats subjected to hemorrhagic stress.
    Burke MJ; Stekiel WJ; Lombard JH
    Circ Shock; 1984; 14(1):25-37. PubMed ID: 6488480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats.
    Asahi M; Asahi K; Wang X; Lo EH
    J Cereb Blood Flow Metab; 2000 Mar; 20(3):452-7. PubMed ID: 10724108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Management of hypertensive emergencies in acute brain disease: evaluation of the treatment effects of intravenous nicardipine on cerebral oxygenation.
    Narotam PK; Puri V; Roberts JM; Taylon C; Vora Y; Nathoo N
    J Neurosurg; 2008 Dec; 109(6):1065-74. PubMed ID: 19035721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible involvement of oxidative stress as a causative factor in blood-brain barrier dysfunction in stroke-prone spontaneously hypertensive rats.
    Takemori K; Murakami T; Kometani T; Ito H
    Microvasc Res; 2013 Nov; 90():169-72. PubMed ID: 23978333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arterial smooth muscle contractions in spontaneously hypertensive rats on a high-calcium diet.
    Pörsti I
    J Hypertens; 1992 Mar; 10(3):255-63. PubMed ID: 1315823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural changes in cerebral arteries following nitric oxide deprivation: a comparison between normotensive and hypertensive rats.
    Hsieh NK; Wang JY; Liu JC; Lee WH; Chen HI
    Thromb Haemost; 2004 Jul; 92(1):162-70. PubMed ID: 15213857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The relationship between regional sympathetic activity and the onset of arterial hypertension in spontaneously hypertensive rats].
    Cabassi A; Vinci S; Calzolari M; Bruschi G; Cavatorta A; Borghetti A
    Cardiologia; 1997 Apr; 42(4):393-6. PubMed ID: 9244643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronological alterations of regional cerebral blood flow, glucose utilization, and edema formation after focal ischemia in hypertensive and normotensive rats. Significance of hypertension.
    Hatashita T; Ito M; Miyaoka M; Ishii S
    Adv Neurol; 1990; 52():29-37. PubMed ID: 2396525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A-4, a tertiary amine analog of HC-3, lowers arterial pressure in spontaneously hypertensive rats.
    Ozkutlu U; Shaffer RA; Lewis SJ; Long JP
    J Pharmacol Exp Ther; 1996 Jun; 277(3):1352-8. PubMed ID: 8667197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential cardiotoxicity in response to chronic doxorubicin treatment in male spontaneous hypertension-heart failure (SHHF), spontaneously hypertensive (SHR), and Wistar Kyoto (WKY) rats.
    Sharkey LC; Radin MJ; Heller L; Rogers LK; Tobias A; Matise I; Wang Q; Apple FS; McCune SA
    Toxicol Appl Pharmacol; 2013 Nov; 273(1):47-57. PubMed ID: 23993975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular distribution of the renal bumetanide-sensitive Na-K-2Cl cotransporter BSC-1 in the inner stripe of the outer medulla during the development of hypertension in the spontaneously hypertensive rat.
    Sonalker PA; Tofovic SP; Jackson EK
    Clin Exp Pharmacol Physiol; 2007 Dec; 34(12):1307-12. PubMed ID: 17973873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental intracerebral haemorrhage in normotensive and spontaneously hypertensive rats.
    González-Darder JM; Durán-Cabral J
    Acta Neurochir (Wien); 1990; 107(3-4):102-7. PubMed ID: 2077845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic hemodynamic and microvascular responses in spontaneously hypertensive rats during Escherichia coli bacteremia.
    Lübbe AS; Harris PD; Garrison RN
    Circ Shock; 1993 Jul; 40(3):157-67. PubMed ID: 8348679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximal and distal pulse pressure after acute antihypertensive vasodilating drugs in Wistar-Kyoto and spontaneously hypertensive rats.
    Tsoucaris D; Benetos A; Legrand M; London GM; Safar ME
    J Hypertens; 1995 Feb; 13(2):243-9. PubMed ID: 7615955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Captopril improves cerebrovascular structure and function in old hypertensive rats.
    Dupuis F; Atkinson J; Limiñana P; Chillon JM
    Br J Pharmacol; 2005 Feb; 144(3):349-56. PubMed ID: 15655534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypertension and vulnerability to hemorrhagic shock in a rat model.
    Reynolds PS; Song KS; Tamariz FJ; Wayne Barbee R
    Shock; 2015 Feb; 43(2):148-56. PubMed ID: 25300030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased local cerebral blood flow in young and aged spontaneously hypertensive rats.
    Katsuta T
    Fukuoka Igaku Zasshi; 1997 Mar; 88(3):65-74. PubMed ID: 9103703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.