These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 10616894)

  • 1. A three-dimensional transport model for determining absorbed fractions of energy for electrons within cortical bone.
    Bouchet LG; Bolch WE
    J Nucl Med; 1999 Dec; 40(12):2115-24. PubMed ID: 10616894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional transport model for determining absorbed fractions of energy for electrons within trabecular bone.
    Bouchet LG; Jokisch DW; Bolch WE
    J Nucl Med; 1999 Nov; 40(11):1947-66. PubMed ID: 10565793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorbed fractions for alpha-particles in tissues of cortical bone.
    Watchman CJ; Bolch WE
    Phys Med Biol; 2009 Oct; 54(19):6009-27. PubMed ID: 19773607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S values for radionuclides localized within the skeleton.
    Bouchet LG; Bolch WE; Howell RW; Rao DV
    J Nucl Med; 2000 Jan; 41(1):189-212. PubMed ID: 10647623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Considerations of marrow cellularity in 3-dimensional dosimetric models of the trabecular skeleton.
    Bolch WE; Patton PW; Rajon DA; Shah AP; Jokisch DW; Inglis BA
    J Nucl Med; 2002 Jan; 43(1):97-108. PubMed ID: 11801712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorbed fractions for alpha-particles in tissues of trabecular bone: considerations of marrow cellularity within the ICRP reference male.
    Watchman CJ; Jokisch DW; Patton PW; Rajon DA; Sgouros G; Bolch WE
    J Nucl Med; 2005 Jul; 46(7):1171-85. PubMed ID: 16000287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling energy deposition in trabecular spongiosa using the Monte Carlo code PENELOPE.
    Gersh JA; Dingfelder M; Toburen LH
    Health Phys; 2007 Jul; 93(1):47-59. PubMed ID: 17563492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.
    Hadid L; Desbrée A; Schlattl H; Franck D; Blanchardon E; Zankl M
    Phys Med Biol; 2010 Jul; 55(13):3631-41. PubMed ID: 20526035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An image-based skeletal dosimetry model for the ICRP reference newborn--internal electron sources.
    Pafundi D; Rajon D; Jokisch D; Lee C; Bolch W
    Phys Med Biol; 2010 Apr; 55(7):1785-814. PubMed ID: 20208096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Five pediatric head and brain mathematical models for use in internal dosimetry.
    Bouchet LG; Bolch WE
    J Nucl Med; 1999 Aug; 40(8):1327-36. PubMed ID: 10450685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adipocyte spatial distributions in bone marrow: implications for skeletal dosimetry models.
    Shah AP; Patton PW; Rajon DA; Bolch WE
    J Nucl Med; 2003 May; 44(5):774-83. PubMed ID: 12732680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron specific absorbed fractions for the adult male and female ICRP/ICRU reference computational phantoms.
    Zankl M; Schlattl H; Petoussi-Henss N; Hoeschen C
    Phys Med Biol; 2012 Jul; 57(14):4501-26. PubMed ID: 22722546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal absorbed fractions for electrons in the adult male: considerations of a revised 50-microm definition of the bone endosteum.
    Bolch WE; Shah AP; Watchman CJ; Jokisch DW; Patton PW; Rajon DA; Zankl M; Petoussi-Henss N; Eckerman KF
    Radiat Prot Dosimetry; 2007; 127(1-4):169-73. PubMed ID: 17556345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes.
    Stabin MG; Konijnenberg MW
    J Nucl Med; 2000 Jan; 41(1):149-60. PubMed ID: 10647618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorbed dose calculations in Haversian canals for several beta-emitting radionuclides.
    Akabani G
    J Nucl Med; 1993 Aug; 34(8):1361-6. PubMed ID: 8326400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Murine S factors for liver, spleen, and kidney.
    Kolbert KS; Watson T; Matei C; Xu S; Koutcher JA; Sgouros G
    J Nucl Med; 2003 May; 44(5):784-91. PubMed ID: 12732681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Monte Carlo study of cellular S-factors for 1 keV to 1 MeV electrons.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2009 Aug; 54(16):5023-38. PubMed ID: 19652289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accounting for beta-particle energy loss to cortical bone via paired-image radiation transport (PIRT).
    Shah AP; Rajon DA; Patton PW; Jokisch DW; Bolch WE
    Med Phys; 2005 May; 32(5):1354-66. PubMed ID: 15984687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation of trabecular bone remodelling and absorbed dose coefficients for tritium and 14C.
    Richardson RB; Nie HL; Chettle DR
    Radiat Prot Dosimetry; 2007; 127(1-4):158-62. PubMed ID: 17652111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorbed fractions for electrons and beta particles in spheres of various sizes.
    Siegel JA; Stabin MG
    J Nucl Med; 1994 Jan; 35(1):152-6. PubMed ID: 8271037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.