These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 10617018)
1. Superiority of magnesium cardioplegia in neonatal myocardial protection. Kronon MT; Allen BS; Hernan J; Halldorsson AO; Rahman S; Buckberg GD; Wang T; Ilbawi MN Ann Thorac Surg; 1999 Dec; 68(6):2285-91; discussion 2291-2. PubMed ID: 10617018 [TBL] [Abstract][Full Text] [Related]
2. Myocardial protection in normal and hypoxically stressed neonatal hearts: the superiority of hypocalcemic versus normocalcemic blood cardioplegia. Bolling K; Kronon M; Allen BS; Ramon S; Wang T; Hartz RS; Feinberg H J Thorac Cardiovasc Surg; 1996 Nov; 112(5):1193-200; discussion 1200-1. PubMed ID: 8911315 [TBL] [Abstract][Full Text] [Related]
3. The relationship between calcium and magnesium in pediatric myocardial protection. Kronon M; Bolling KS; Allen BS; Rahman S; Wang T; Halldorsson A; Feinberg H J Thorac Cardiovasc Surg; 1997 Dec; 114(6):1010-9. PubMed ID: 9434696 [TBL] [Abstract][Full Text] [Related]
4. Delivery of a non-potassium modified maintenance solution to enhance myocardial protection in stressed neonatal hearts: a new approach. Kronon MT; Allen BS; Halldorsson A; Rahman S; Barth MJ; Ilbawi M J Thorac Cardiovasc Surg; 2002 Jan; 123(1):119-29. PubMed ID: 11782765 [TBL] [Abstract][Full Text] [Related]
5. Normocalcemic blood or crystalloid cardioplegia provides better neonatal myocardial protection than does low-calcium cardioplegia. Pearl JM; Laks H; Drinkwater DC; Meneshian A; Sun B; Gates RN; Chang P J Thorac Cardiovasc Surg; 1993 Feb; 105(2):201-6. PubMed ID: 8429645 [TBL] [Abstract][Full Text] [Related]
6. The role of cardioplegia induction temperature and amino acid enrichment in neonatal myocardial protection. Kronon MT; Allen BS; Bolling KS; Rahman S; Wang T; Maniar HS; Prasad SM; Ilbawi MN Ann Thorac Surg; 2000 Sep; 70(3):756-64. PubMed ID: 11016306 [TBL] [Abstract][Full Text] [Related]
7. The importance of cardioplegic infusion pressure in neonatal myocardial protection. Kronon M; Bolling KS; Allen BS; Halldorsson AO; Wang T; Rahman S Ann Thorac Surg; 1998 Oct; 66(4):1358-64. PubMed ID: 9800833 [TBL] [Abstract][Full Text] [Related]
8. Myocardial protection in normal and hypoxically stressed neonatal hearts: the superiority of blood versus crystalloid cardioplegia. Bolling K; Kronon M; Allen BS; Wang T; Ramon S; Feinberg H J Thorac Cardiovasc Surg; 1997 Jun; 113(6):994-1003; discussion 1003-5. PubMed ID: 9202679 [TBL] [Abstract][Full Text] [Related]
9. Dose dependency of L-arginine in neonatal myocardial protection: the nitric oxide paradox. Kronon MT; Allen BS; Halldorsson A; Rahman S; Wang T; Ilbawi M J Thorac Cardiovasc Surg; 1999 Oct; 118(4):655-64. PubMed ID: 10504630 [TBL] [Abstract][Full Text] [Related]
10. L-arginine, prostaglandin, and white cell filtration equally improve myocardial protection in stressed neonatal hearts. Kronon MT; Allen BS; Halldorsson A; Rahman S; Wang T; Ilbawi M J Thorac Cardiovasc Surg; 1999 Oct; 118(4):665-72. PubMed ID: 10504631 [TBL] [Abstract][Full Text] [Related]
12. Reducing postischemic reperfusion damage in neonates using a terminal warm substrate-enriched blood cardioplegic reperfusate. Kronon MT; Allen BS; Rahman S; Wang T; Tayyab NA; Bolling KS; Ilbawi MN Ann Thorac Surg; 2000 Sep; 70(3):765-70. PubMed ID: 11016307 [TBL] [Abstract][Full Text] [Related]
13. Interactions between preischemic hypothermia and cardioplegic solutions in the neonatal lamb heart. Aoki M; Nomura F; Mayer JE J Thorac Cardiovasc Surg; 1994 Mar; 107(3):822-8. PubMed ID: 8127111 [TBL] [Abstract][Full Text] [Related]
14. Nitric-oxide-induced reoxygenation injury in the cyanotic immature heart is prevented by controlling oxygen content during initial reoxygenation. Ihnken K; Morita K; Buckberg GD; Winkelmann B; Schmitt M; Ignarro LJ; Sherman MP Angiology; 1997 Mar; 48(3):189-202. PubMed ID: 9071194 [TBL] [Abstract][Full Text] [Related]
15. Studies of myocardial protection in the immature heart. V. Safety of prolonged aortic clamping with hypocalcemic glutamate/aspartate blood cardioplegia. Kofsky E; Julia P; Buckberg GD; Young H; Tixier D J Thorac Cardiovasc Surg; 1991 Jan; 101(1):33-43. PubMed ID: 1986168 [TBL] [Abstract][Full Text] [Related]
16. Protection of the neonatal heart following normothermic ischemia: a comparison of oxygenated saline and oxygenated versus nonoxygenated cardioplegia. Lynch MJ; Bove EL; Zweng TN; Fox MH; Bolling SF; Gallagher KP Ann Thorac Surg; 1988 Jun; 45(6):650-5. PubMed ID: 3377577 [TBL] [Abstract][Full Text] [Related]
17. Studies of hypoxemic/reoxygenation injury: with aortic clamping. XII. Delay of cardiac reoxygenation damage in the presence of cyanosis: a new concept of controlled cardiac reoxygenation. Morita K; Ihnken K; Buckberg GD J Thorac Cardiovasc Surg; 1995 Oct; 110(4 Pt 2):1265-73. PubMed ID: 7475178 [TBL] [Abstract][Full Text] [Related]
18. Studies of hypoxemic/reoxygenation injury: with aortic clamping. XIII. Interaction between oxygen tension and cardioplegic composition in limiting nitric oxide production and oxidant damage. Ihnken K; Morita K; Buckberg GD; Sherman MP; Ignarro LJ; Young HH J Thorac Cardiovasc Surg; 1995 Oct; 110(4 Pt 2):1274-86. PubMed ID: 7475179 [TBL] [Abstract][Full Text] [Related]
19. [Comparison of the protective prorerties of St. Thomas', Tyers', and Bretschneider's cardioplegic solutions in the neonatal rabbit heart]. Murashita T; Yasuda K Nihon Kyobu Geka Gakkai Zasshi; 1996 Nov; 44(11):2019-26. PubMed ID: 8958717 [TBL] [Abstract][Full Text] [Related]
20. Effects of potassium cardioplegia on high-energy phosphate kinetics during circulatory arrest with deep hypothermia in the newborn piglet heart. Clark BJ; Woodford EJ; Malec EJ; Norwood CR; Pigott JD; Norwood WI J Thorac Cardiovasc Surg; 1991 Feb; 101(2):342-9. PubMed ID: 1992245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]