BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 10617122)

  • 1. Changes of synaptotagmin interaction with t-SNARE proteins in vitro after calcium/calmodulin-dependent phosphorylation.
    Verona M; Zanotti S; Schäfer T; Racagni G; Popoli M
    J Neurochem; 2000 Jan; 74(1):209-21. PubMed ID: 10617122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms.
    Risinger C; Bennett MK
    J Neurochem; 1999 Feb; 72(2):614-24. PubMed ID: 9930733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulin-activated protein kinase II to syntaxin 1A.
    Ohyama A; Hosaka K; Komiya Y; Akagawa K; Yamauchi E; Taniguchi H; Sasagawa N; Kumakura K; Mochida S; Yamauchi T; Igarashi M
    J Neurosci; 2002 May; 22(9):3342-51. PubMed ID: 11978810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+-dependent phosphorylation of syntaxin-1A by the death-associated protein (DAP) kinase regulates its interaction with Munc18.
    Tian JH; Das S; Sheng ZH
    J Biol Chem; 2003 Jul; 278(28):26265-74. PubMed ID: 12730201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. R-type voltage-gated Ca(2+) channel interacts with synaptic proteins and recruits synaptotagmin to the plasma membrane of Xenopus oocytes.
    Cohen R; Atlas D
    Neuroscience; 2004; 128(4):831-41. PubMed ID: 15464290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+-dependent interaction of the growth-associated protein GAP-43 with the synaptic core complex.
    Haruta T; Takami N; Ohmura M; Misumi Y; Ikehara Y
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):455-63. PubMed ID: 9230128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between proteins implicated in exocytosis and voltage-gated calcium channels.
    Seagar M; Lévêque C; Charvin N; Marquèze B; Martin-Moutot N; Boudier JA; Boudier JL; Shoji-Kasai Y; Sato K; Takahashi M
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):289-97. PubMed ID: 10212477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical link and functional coupling of presynaptic calcium channels and the synaptic vesicle docking/fusion machinery.
    Sheng ZH; Westenbroek RE; Catterall WA
    J Bioenerg Biomembr; 1998 Aug; 30(4):335-45. PubMed ID: 9758330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-dependent dissociation of synaptotagmin from synaptic SNARE complexes.
    Leveque C; Boudier JA; Takahashi M; Seagar M
    J Neurochem; 2000 Jan; 74(1):367-74. PubMed ID: 10617141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relation of protein binding to function: what is the significance of munc18 and synaptotagmin binding to syntaxin 1, and where are the corresponding binding sites?
    Matos MF; Rizo J; Südhof TC
    Eur J Cell Biol; 2000 Jun; 79(6):377-82. PubMed ID: 10928452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I.
    Mahal LK; Sequeira SM; Gureasko JM; Söllner TH
    J Cell Biol; 2002 Jul; 158(2):273-82. PubMed ID: 12119360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of synaptic vesicle proteins: modulation of the alpha SNAP interaction with the core complex.
    Hirling H; Scheller RH
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11945-9. PubMed ID: 8876242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins.
    Yokoyama CT; Sheng ZH; Catterall WA
    J Neurosci; 1997 Sep; 17(18):6929-38. PubMed ID: 9278528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin.
    Quetglas S; Leveque C; Miquelis R; Sato K; Seagar M
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9695-700. PubMed ID: 10944231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses.
    Schiavo G; Stenbeck G; Rothman JE; Söllner TH
    Proc Natl Acad Sci U S A; 1997 Feb; 94(3):997-1001. PubMed ID: 9023371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis.
    Zhang X; Kim-Miller MJ; Fukuda M; Kowalchyk JA; Martin TF
    Neuron; 2002 May; 34(4):599-611. PubMed ID: 12062043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis.
    Rao SK; Huynh C; Proux-Gillardeaux V; Galli T; Andrews NW
    J Biol Chem; 2004 May; 279(19):20471-9. PubMed ID: 14993220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions.
    Bai J; Wang CT; Richards DA; Jackson MB; Chapman ER
    Neuron; 2004 Mar; 41(6):929-42. PubMed ID: 15046725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+-dependent and -independent interactions of the isoforms of the alpha1A subunit of brain Ca2+ channels with presynaptic SNARE proteins.
    Kim DK; Catterall WA
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14782-6. PubMed ID: 9405690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of SNARE protein expression in beta cell lines and pancreatic islets.
    Wheeler MB; Sheu L; Ghai M; Bouquillon A; Grondin G; Weller U; Beaudoin AR; Bennett MK; Trimble WS; Gaisano HY
    Endocrinology; 1996 Apr; 137(4):1340-8. PubMed ID: 8625909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.