These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10617413)

  • 1. Tissue engineering. Growing human corneas in the lab.
    Ferber D
    Science; 1999 Dec; 286(5447):2051, 2053. PubMed ID: 10617413
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional human corneal equivalents constructed from cell lines.
    Griffith M; Osborne R; Munger R; Xiong X; Doillon CJ; Laycock NL; Hakim M; Song Y; Watsky MA
    Science; 1999 Dec; 286(5447):2169-72. PubMed ID: 10591651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of a tissue-engineered cornea with porcine corneal acellular matrix as the scaffold.
    Fu Y; Fan X; Chen P; Shao C; Lu W
    Cells Tissues Organs; 2010; 191(3):193-202. PubMed ID: 19690400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Self-assembly Approach as a Tool for the Tissue Engineering of a Bi-lamellar Human Cornea.
    Le-Bel G; Desjardins P; Couture C; Germain L; Guérin SL
    Methods Mol Biol; 2020; 2145():103-118. PubMed ID: 32542603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells.
    Zhang C; Du L; Sun P; Shen L; Zhu J; Pang K; Wu X
    Biomaterials; 2017 Apr; 124():180-194. PubMed ID: 28199886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing an in vitro cornea from cultures of the three specific corneal cell types.
    Schneider AI; Maier-Reif K; Graeve T
    In Vitro Cell Dev Biol Anim; 1999 Oct; 35(9):515-26. PubMed ID: 10548433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Expansion of Corneal Endothelial Cells for Transplantation.
    Santerre K; Xu I; Thériault M; Proulx S
    Methods Mol Biol; 2020; 2145():17-27. PubMed ID: 32542597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an animal product-free variant of MegaCell MEM as a storage medium for corneas destined for transplantation.
    Smith VA; Johnson T
    Ophthalmic Res; 2010; 43(1):33-42. PubMed ID: 19829010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of corneas reconstructed with cultured human corneal endothelial cells and human corneal stroma.
    Amano S; Mimura T; Yamagami S; Osakabe Y; Miyata K
    Jpn J Ophthalmol; 2005; 49(6):448-452. PubMed ID: 16365789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic parameters of cells from a bioengineered human corneal equivalent and consequences for cryopreservation.
    Ebertz SL; McGann LE
    Cryobiology; 2002 Oct; 45(2):109-17. PubMed ID: 12482376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for developing decellularized corneal scaffolds.
    Lynch AP; Ahearne M
    Exp Eye Res; 2013 Mar; 108():42-7. PubMed ID: 23287438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative anatomy of laboratory animal corneas with a new-generation high-resolution in vivo confocal microscope.
    Labbé A; Liang H; Martin C; Brignole-Baudouin F; Warnet JM; Baudouin C
    Curr Eye Res; 2006 Jun; 31(6):501-9. PubMed ID: 16769609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A human corneal equivalent constructed from SV40-immortalised corneal cell lines.
    Zorn-Kruppa M; Tykhonova S; Belge G; Bednarz J; Diehl HA; Engelke M
    Altern Lab Anim; 2005 Feb; 33(1):37-45. PubMed ID: 15813699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a reconstructed cornea from collagen-chondroitin sulfate foams and human cell cultures.
    Vrana NE; Builles N; Justin V; Bednarz J; Pellegrini G; Ferrari B; Damour O; Hulmes DJ; Hasirci V
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5325-31. PubMed ID: 18708614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaffold.
    Du L; Wu X; Pang K; Yang Y
    Br J Ophthalmol; 2011 Mar; 95(3):410-4. PubMed ID: 20956275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The zebrafish cornea: structure and development.
    Zhao XC; Yee RW; Norcom E; Burgess H; Avanesov AS; Barrish JP; Malicki J
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4341-8. PubMed ID: 17003424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts.
    Yoeruek E; Bayyoud T; Maurus C; Hofmann J; Spitzer MS; Bartz-Schmidt KU; Szurman P
    Acta Ophthalmol; 2012 Mar; 90(2):e125-31. PubMed ID: 22136333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Megacell MEM as a storage medium for corneas destined for transplantation.
    Smith VA; Johnson T
    Ophthalmic Res; 2010; 43(1):18-25. PubMed ID: 19829008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Normal retinal layers in HRT II corneal module].
    Michalewska Z; Michalewski J; Nawrocka Z
    Klin Oczna; 2008; 110(10-12):352-6. PubMed ID: 19195164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo-Like Culture Conditions in a Bioreactor Facilitate Improved Tissue Quality in Corneal Storage.
    Schmid R; Tarau IS; Rossi A; Leonhardt S; Schwarz T; Schuerlein S; Lotz C; Hansmann J
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 28873283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.