BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 10617655)

  • 1. Kinase-dependent regulation of the intermediate conductance, calcium-dependent potassium channel, hIK1.
    Gerlach AC; Gangopadhyay NN; Devor DC
    J Biol Chem; 2000 Jan; 275(1):585-98. PubMed ID: 10617655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-dependent activation of the intermediate conductance, Ca2+-activated K+ channel, hIK1, is conferred by a C-terminal domain.
    Gerlach AC; Syme CA; Giltinan L; Adelman JP; Devors DC
    J Biol Chem; 2001 Jun; 276(24):10963-70. PubMed ID: 11439928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of the rat SK4/IK1 K(+) channel.
    von Hahn T; Thiele I; Zingaro L; Hamm K; Garcia-Alzamora M; Köttgen M; Bleich M; Warth R
    Cell Physiol Biochem; 2001; 11(4):219-30. PubMed ID: 11509830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent activation of the intermediate conductance, Ca2+-activated K+ channel, hIK1, is conferred by a C-terminal domain.
    Gerlach AC; Syme CA; Giltinan L; Adelman JP; Devor DC
    J Biol Chem; 2001 Apr; 276(14):10963-70. PubMed ID: 11096085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An NH2-terminal multi-basic RKR motif is required for the ATP-dependent regulation of hIK1.
    Jones HM; Bailey MA; Baty CJ; Macgregor GG; Syme CA; Hamilton KL; Devor DC
    Channels (Austin); 2007; 1(2):80-91. PubMed ID: 18690018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological activation of cloned intermediate- and small-conductance Ca(2+)-activated K(+) channels.
    Syme CA; Gerlach AC; Singh AK; Devor DC
    Am J Physiol Cell Physiol; 2000 Mar; 278(3):C570-81. PubMed ID: 10712246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular ATP inhibits the small-conductance K channel on the apical membrane of the cortical collecting duct from mouse kidney.
    Lu M; MacGregor GG; Wang W; Giebisch G
    J Gen Physiol; 2000 Aug; 116(2):299-310. PubMed ID: 10919872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of an inwardly rectifying K channel in the T84 epithelial cell line by calcium, nucleotides and kinases.
    Tabcharani JA; Boucher A; Eng JW; Hanrahan JW
    J Membr Biol; 1994 Nov; 142(2):255-66. PubMed ID: 7533842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase.
    Xu ZC; Yang Y; Hebert SC
    J Biol Chem; 1996 Apr; 271(16):9313-9. PubMed ID: 8621594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two types of voltage-dependent potassium channels in outer hair cells from the guinea pig cochlea.
    van Den Abbeele T; Teulon J; Huy PT
    Am J Physiol; 1999 Nov; 277(5):C913-25. PubMed ID: 10564084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-dependent regulation of SK4/IK1-like currents in rat submandibular acinar cells: possible role of cAMP-dependent protein kinase.
    Hayashi M; Kunii C; Takahata T; Ishikawa T
    Am J Physiol Cell Physiol; 2004 Mar; 286(3):C635-46. PubMed ID: 14602578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of an inwardly rectifying ATP-sensitive K+ channel in the basolateral membrane of renal proximal tubule.
    Mauerer UR; Boulpaep EL; Segal AS
    J Gen Physiol; 1998 Jan; 111(1):161-80. PubMed ID: 9417142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modafinil inhibits K(Ca)3.1 currents and muscle contraction via a cAMP-dependent mechanism.
    Choi S; Kim MY; Joo KY; Park S; Kim JA; Jung JC; Oh S; Suh SH
    Pharmacol Res; 2012 Jul; 66(1):51-9. PubMed ID: 22414869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of beta-adrenergic modulation of large conductance, calcium-activated potassium (maxi-K) channels in Xenopus oocytes. Identification of the camp-dependent protein kinase phosphorylation site.
    Nara M; Dhulipala PD; Wang YX; Kotlikoff MI
    J Biol Chem; 1998 Jun; 273(24):14920-4. PubMed ID: 9614096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PKA-mediated inhibition of a novel K+ channel underlies the slow after-hyperpolarization in enteric AH neurons.
    Vogalis F; Harvey JR; Furness JB
    J Physiol; 2003 May; 548(Pt 3):801-14. PubMed ID: 12640013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergent and parallel activation of low-conductance potassium channels by calcium and cAMP-dependent protein kinase.
    Lidofsky SD
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):7115-9. PubMed ID: 7624380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolyzable ATP and PIP(2) modulate the small-conductance K+ channel in apical membranes of rat cortical-collecting duct (CCD).
    Lu M; Hebert SC; Giebisch G
    J Gen Physiol; 2002 Nov; 120(5):603-15. PubMed ID: 12407074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of the human intermediate conductance Ca(2+)-activated K(+) channel, hIK1, by volatile anesthetics.
    Namba T; Ishii TM; Ikeda M; Hisano T; Itoh T; Hirota K; Adelman JP; Fukuda K
    Eur J Pharmacol; 2000 Apr; 395(2):95-101. PubMed ID: 10794813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.
    Nuwer MO; Picchione KE; Bhattacharjee A
    Neuropharmacology; 2009 Sep; 57(3):219-26. PubMed ID: 19540251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values.
    Leipziger J; MacGregor GG; Cooper GJ; Xu J; Hebert SC; Giebisch G
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F919-26. PubMed ID: 11053053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.